glenn-jocher
commited on
Commit
•
a040500
1
Parent(s):
95ef36b
Update README.md
Browse files
README.md
CHANGED
@@ -25,8 +25,8 @@ This repository represents Ultralytics open-source research into future object d
|
|
25 |
|
26 |
|
27 |
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
28 |
-
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
|
29 |
-
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
|
30 |
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
31 |
|
32 |
|
@@ -40,14 +40,22 @@ $ pip install -U -r requirements.txt
|
|
40 |
|
41 |
## Tutorials
|
42 |
|
43 |
-
* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
44 |
-
* [Kaggle](https://www.kaggle.com/ultralytics/yolov5)
|
45 |
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
|
46 |
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
|
47 |
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
|
48 |
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
49 |
-
* [
|
50 |
-
* [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
## Inference
|
@@ -80,7 +88,8 @@ Results saved to /content/yolov5/inference/output
|
|
80 |
|
81 |
<img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
|
82 |
|
83 |
-
|
|
|
84 |
|
85 |
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
|
86 |
```bash
|
@@ -92,16 +101,6 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size
|
|
92 |
<img src="https://user-images.githubusercontent.com/26833433/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png" width="900">
|
93 |
|
94 |
|
95 |
-
## Reproduce Our Environment
|
96 |
-
|
97 |
-
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
98 |
-
|
99 |
-
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
100 |
-
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
|
101 |
-
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
102 |
-
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
|
103 |
-
|
104 |
-
|
105 |
## Citation
|
106 |
|
107 |
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
|
|
|
25 |
|
26 |
|
27 |
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
28 |
+
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
|
29 |
+
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
|
30 |
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
31 |
|
32 |
|
|
|
40 |
|
41 |
## Tutorials
|
42 |
|
|
|
|
|
43 |
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
|
44 |
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
|
45 |
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
|
46 |
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
47 |
+
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
|
48 |
+
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
|
49 |
+
|
50 |
+
|
51 |
+
## Environments
|
52 |
+
|
53 |
+
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
54 |
+
|
55 |
+
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
56 |
+
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
|
57 |
+
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
58 |
+
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
|
59 |
|
60 |
|
61 |
## Inference
|
|
|
88 |
|
89 |
<img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
|
90 |
|
91 |
+
|
92 |
+
## Training
|
93 |
|
94 |
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
|
95 |
```bash
|
|
|
101 |
<img src="https://user-images.githubusercontent.com/26833433/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png" width="900">
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
## Citation
|
105 |
|
106 |
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
|