glenn-jocher commited on
Commit
a040500
1 Parent(s): 95ef36b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -17
README.md CHANGED
@@ -25,8 +25,8 @@ This repository represents Ultralytics open-source research into future object d
25
 
26
 
27
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
28
- ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
29
- ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
30
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
31
 
32
 
@@ -40,14 +40,22 @@ $ pip install -U -r requirements.txt
40
 
41
  ## Tutorials
42
 
43
- * [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
44
- * [Kaggle](https://www.kaggle.com/ultralytics/yolov5)
45
  * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
46
  * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
47
  * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
48
  * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
49
- * [Google Cloud Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
50
- * [Docker Quickstart](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
 
 
 
 
 
 
 
 
 
 
51
 
52
 
53
  ## Inference
@@ -80,7 +88,8 @@ Results saved to /content/yolov5/inference/output
80
 
81
  <img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
82
 
83
- ## Reproduce Our Training
 
84
 
85
  Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
86
  ```bash
@@ -92,16 +101,6 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size
92
  <img src="https://user-images.githubusercontent.com/26833433/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png" width="900">
93
 
94
 
95
- ## Reproduce Our Environment
96
-
97
- YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
98
-
99
- - **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
100
- - **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
101
- - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
102
- - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
103
-
104
-
105
  ## Citation
106
 
107
  [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
 
25
 
26
 
27
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
28
+ ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
29
+ ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
30
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
31
 
32
 
 
40
 
41
  ## Tutorials
42
 
 
 
43
  * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
44
  * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
45
  * [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
46
  * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
47
+ * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
48
+ * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
49
+
50
+
51
+ ## Environments
52
+
53
+ YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
54
+
55
+ - **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
56
+ - **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
57
+ - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
58
+ - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
59
 
60
 
61
  ## Inference
 
88
 
89
  <img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
90
 
91
+
92
+ ## Training
93
 
94
  Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
95
  ```bash
 
101
  <img src="https://user-images.githubusercontent.com/26833433/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png" width="900">
102
 
103
 
 
 
 
 
 
 
 
 
 
 
104
  ## Citation
105
 
106
  [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)