astoken commited on
Commit
a85e6d0
1 Parent(s): 8b26e89

add parser arg for hyp yaml file

Browse files
Files changed (1) hide show
  1. train.py +5 -1
train.py CHANGED
@@ -43,7 +43,9 @@ hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
43
  'translate': 0.0, # image translation (+/- fraction)
44
  'scale': 0.5, # image scale (+/- gain)
45
  'shear': 0.0} # image shear (+/- deg)
46
- print(hyp)
 
 
47
 
48
  # Overwrite hyp with hyp*.txt (optional)
49
  f = glob.glob('hyp*.txt')
@@ -382,10 +384,12 @@ if __name__ == '__main__':
382
  parser.add_argument('--adam', action='store_true', help='use adam optimizer')
383
  parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%')
384
  parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
 
385
  opt = parser.parse_args()
386
  opt.weights = last if opt.resume else opt.weights
387
  opt.cfg = check_file(opt.cfg) # check file
388
  opt.data = check_file(opt.data) # check file
 
389
  print(opt)
390
  opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
391
  device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
 
43
  'translate': 0.0, # image translation (+/- fraction)
44
  'scale': 0.5, # image scale (+/- gain)
45
  'shear': 0.0} # image shear (+/- deg)
46
+
47
+ # Don't need to be printing every time
48
+ #print(hyp)
49
 
50
  # Overwrite hyp with hyp*.txt (optional)
51
  f = glob.glob('hyp*.txt')
 
384
  parser.add_argument('--adam', action='store_true', help='use adam optimizer')
385
  parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%')
386
  parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
387
+ parser.add_argument('--hyp', type=str, default='', help ='path to hyp yaml file')
388
  opt = parser.parse_args()
389
  opt.weights = last if opt.resume else opt.weights
390
  opt.cfg = check_file(opt.cfg) # check file
391
  opt.data = check_file(opt.data) # check file
392
+ opt.hyp = check_file(opt.hyp) #check file
393
  print(opt)
394
  opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
395
  device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)