yxNONG commited on
Commit
b3ceffb
1 Parent(s): 7d629fd

Add QFocalLoss() (#1482)

Browse files

* Update loss.py

implement the quality focal loss which is a more general case of focal loss
more detail in https://arxiv.org/abs/2006.04388

In the obj loss (or the case cls loss with label smooth), the targets is no long barely be 0 or 1 (can be 0.7), in this case, the normal focal loss is not work accurately
quality focal loss in behave the same as focal loss when the target is equal to 0 or 1, and work accurately when targets in (0, 1)

example:

targets:
tensor([[0.6225, 0.0000, 0.0000],
[0.9000, 0.0000, 0.0000],
[1.0000, 0.0000, 0.0000]])
___________________________
pred_prob:
tensor([[0.6225, 0.2689, 0.1192],
[0.7773, 0.5000, 0.2227],
[0.8176, 0.8808, 0.1978]])
____________________________
focal_loss
tensor([[0.0937, 0.0328, 0.0039],
[0.0166, 0.1838, 0.0199],
[0.0039, 1.3186, 0.0145]])
______________
qfocal_loss
tensor([[7.5373e-08, 3.2768e-02, 3.9179e-03],
[4.8601e-03, 1.8380e-01, 1.9857e-02],
[3.9233e-03, 1.3186e+00, 1.4545e-02]])

we can see that targets[0][0] = 0.6255 is almost the same as pred_prob[0][0] = 0.6225,
the targets[1][0] = 0.9 is greater then pred_prob[1][0] = 0.7773 by 0.1227
however, the focal loss[0][0] = 0.0937 larger then focal loss[1][0] = 0.0166 (which against the purpose of focal loss)

for the quality focal loss , it implement the case of targets not equal to 0 or 1

* Update loss.py

Files changed (1) hide show
  1. utils/loss.py +26 -0
utils/loss.py CHANGED
@@ -57,6 +57,32 @@ class FocalLoss(nn.Module):
57
  return loss.sum()
58
  else: # 'none'
59
  return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
 
62
  def compute_loss(p, targets, model): # predictions, targets, model
 
57
  return loss.sum()
58
  else: # 'none'
59
  return loss
60
+
61
+
62
+ class QFocalLoss(nn.Module):
63
+ # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
64
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
65
+ super(QFocalLoss, self).__init__()
66
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
67
+ self.gamma = gamma
68
+ self.alpha = alpha
69
+ self.reduction = loss_fcn.reduction
70
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
71
+
72
+ def forward(self, pred, true):
73
+ loss = self.loss_fcn(pred, true)
74
+
75
+ pred_prob = torch.sigmoid(pred) # prob from logits
76
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
77
+ modulating_factor = torch.abs(true - pred_prob) ** self.gamma
78
+ loss *= alpha_factor * modulating_factor
79
+
80
+ if self.reduction == 'mean':
81
+ return loss.mean()
82
+ elif self.reduction == 'sum':
83
+ return loss.sum()
84
+ else: # 'none'
85
+ return loss
86
 
87
 
88
  def compute_loss(p, targets, model): # predictions, targets, model