glenn-jocher commited on
Commit
bb87276
1 Parent(s): 8bf3cff

update build_targets() (#589)

Browse files

Signed-off-by: Glenn Jocher <[email protected]>

Files changed (1) hide show
  1. utils/utils.py +48 -55
utils/utils.py CHANGED
@@ -308,7 +308,7 @@ def compute_ap(recall, precision):
308
 
309
  def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
310
  # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
311
- box2 = box2.t()
312
 
313
  # Get the coordinates of bounding boxes
314
  if x1y1x2y2: # x1, y1, x2, y2 = box1
@@ -347,7 +347,7 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
347
  v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
348
  with torch.no_grad():
349
  alpha = v / (1 - iou + v + 1e-16)
350
- return iou - (rho2 / c2 + v * alpha ) # CIoU
351
 
352
  return iou
353
 
@@ -369,8 +369,8 @@ def box_iou(box1, box2):
369
  # box = 4xn
370
  return (box[2] - box[0]) * (box[3] - box[1])
371
 
372
- area1 = box_area(box1.t())
373
- area2 = box_area(box2.t())
374
 
375
  # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
376
  inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
@@ -439,70 +439,62 @@ class BCEBlurWithLogitsLoss(nn.Module):
439
 
440
  def compute_loss(p, targets, model): # predictions, targets, model
441
  device = targets.device
442
- ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
443
- lcls, lbox, lobj = ft([0]).to(device), ft([0]).to(device), ft([0]).to(device)
444
  tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
445
  h = model.hyp # hyperparameters
446
- red = 'mean' # Loss reduction (sum or mean)
447
 
448
  # Define criteria
449
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red).to(device)
450
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red).to(device)
451
 
452
- # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
453
  cp, cn = smooth_BCE(eps=0.0)
454
 
455
- # focal loss
456
  g = h['fl_gamma'] # focal loss gamma
457
  if g > 0:
458
  BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
459
 
460
- # per output
461
  nt = 0 # number of targets
462
  np = len(p) # number of outputs
463
  balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
464
  for i, pi in enumerate(p): # layer index, layer predictions
465
  b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
466
- tobj = torch.zeros_like(pi[..., 0]).to(device) # target obj
467
 
468
- nb = b.shape[0] # number of targets
469
- if nb:
470
- nt += nb # cumulative targets
471
  ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
472
 
473
- # GIoU
474
  pxy = ps[:, :2].sigmoid() * 2. - 0.5
475
  pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
476
  pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
477
- giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou(prediction, target)
478
- lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss
479
 
480
- # Obj
481
  tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
482
 
483
- # Class
484
  if model.nc > 1: # cls loss (only if multiple classes)
485
- t = torch.full_like(ps[:, 5:], cn).to(device) # targets
486
- t[range(nb), tcls[i]] = cp
487
- lcls += BCEcls(ps[:, 5:], t) # BCE
488
 
489
  # Append targets to text file
490
  # with open('targets.txt', 'a') as file:
491
  # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
492
 
493
- lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
494
 
495
  s = 3 / np # output count scaling
496
  lbox *= h['giou'] * s
497
  lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
498
  lcls *= h['cls'] * s
499
  bs = tobj.shape[0] # batch size
500
- if red == 'sum':
501
- g = 3.0 # loss gain
502
- lobj *= g / bs
503
- if nt:
504
- lcls *= g / nt / model.nc
505
- lbox *= g / nt
506
 
507
  loss = lbox + lobj + lcls
508
  return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
@@ -510,40 +502,40 @@ def compute_loss(p, targets, model): # predictions, targets, model
510
 
511
  def build_targets(p, targets, model):
512
  # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
513
- det = model.module.model[-1] if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) \
514
- else model.model[-1] # Detect() module
515
  na, nt = det.na, targets.shape[0] # number of anchors, targets
516
  tcls, tbox, indices, anch = [], [], [], []
517
- gain = torch.ones(6, device=targets.device) # normalized to gridspace gain
518
- off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float() # overlap offsets
519
- at = torch.arange(na).view(na, 1).repeat(1, nt) # anchor tensor, same as .repeat_interleave(nt)
 
 
 
 
 
 
520
 
521
- g = 0.5 # offset
522
- style = 'rect4'
523
  for i in range(det.nl):
524
  anchors = det.anchors[i]
525
- gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
526
 
527
  # Match targets to anchors
528
- a, t, offsets = [], targets * gain, 0
529
  if nt:
530
- r = t[None, :, 4:6] / anchors[:, None] # wh ratio
 
531
  j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
532
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2))
533
- a, t = at[j], t.repeat(na, 1, 1)[j] # filter
534
 
535
- # overlaps
536
  gxy = t[:, 2:4] # grid xy
537
- z = torch.zeros_like(gxy)
538
- if style == 'rect2':
539
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
540
- a, t = torch.cat((a, a[j], a[k]), 0), torch.cat((t, t[j], t[k]), 0)
541
- offsets = torch.cat((z, z[j] + off[0], z[k] + off[1]), 0) * g
542
- elif style == 'rect4':
543
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
544
- l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T
545
- a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0)
546
- offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g
547
 
548
  # Define
549
  b, c = t[:, :2].long().T # image, class
@@ -553,6 +545,7 @@ def build_targets(p, targets, model):
553
  gi, gj = gij.T # grid xy indices
554
 
555
  # Append
 
556
  indices.append((b, a, gj, gi)) # image, anchor, grid indices
557
  tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
558
  anch.append(anchors[a]) # anchors
@@ -599,7 +592,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False,
599
 
600
  # Detections matrix nx6 (xyxy, conf, cls)
601
  if multi_label:
602
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).t()
603
  x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
604
  else: # best class only
605
  conf, j = x[:, 5:].max(1, keepdim=True)
 
308
 
309
  def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
310
  # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
311
+ box2 = box2.T
312
 
313
  # Get the coordinates of bounding boxes
314
  if x1y1x2y2: # x1, y1, x2, y2 = box1
 
347
  v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
348
  with torch.no_grad():
349
  alpha = v / (1 - iou + v + 1e-16)
350
+ return iou - (rho2 / c2 + v * alpha) # CIoU
351
 
352
  return iou
353
 
 
369
  # box = 4xn
370
  return (box[2] - box[0]) * (box[3] - box[1])
371
 
372
+ area1 = box_area(box1.T)
373
+ area2 = box_area(box2.T)
374
 
375
  # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
376
  inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
 
439
 
440
  def compute_loss(p, targets, model): # predictions, targets, model
441
  device = targets.device
442
+ lcls, lbox, lobj = torch.zeros(3, 1, device=device)
 
443
  tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
444
  h = model.hyp # hyperparameters
 
445
 
446
  # Define criteria
447
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
448
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
449
 
450
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
451
  cp, cn = smooth_BCE(eps=0.0)
452
 
453
+ # Focal loss
454
  g = h['fl_gamma'] # focal loss gamma
455
  if g > 0:
456
  BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
457
 
458
+ # Losses
459
  nt = 0 # number of targets
460
  np = len(p) # number of outputs
461
  balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
462
  for i, pi in enumerate(p): # layer index, layer predictions
463
  b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
464
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
465
 
466
+ n = b.shape[0] # number of targets
467
+ if n:
468
+ nt += n # cumulative targets
469
  ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
470
 
471
+ # Regression
472
  pxy = ps[:, :2].sigmoid() * 2. - 0.5
473
  pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
474
  pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
475
+ giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target)
476
+ lbox += (1.0 - giou).mean() # giou loss
477
 
478
+ # Objectness
479
  tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
480
 
481
+ # Classification
482
  if model.nc > 1: # cls loss (only if multiple classes)
483
+ t = torch.full_like(ps[:, 5:], cn, device=device) # targets
484
+ t[range(n), tcls[i]] = cp
485
+ lcls = lcls + BCEcls(ps[:, 5:], t) # BCE
486
 
487
  # Append targets to text file
488
  # with open('targets.txt', 'a') as file:
489
  # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
490
 
491
+ lobj = lobj + BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
492
 
493
  s = 3 / np # output count scaling
494
  lbox *= h['giou'] * s
495
  lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
496
  lcls *= h['cls'] * s
497
  bs = tobj.shape[0] # batch size
 
 
 
 
 
 
498
 
499
  loss = lbox + lobj + lcls
500
  return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
 
502
 
503
  def build_targets(p, targets, model):
504
  # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
505
+ det = model.module.model[-1] if torch_utils.is_parallel(model) else model.model[-1] # Detect() module
 
506
  na, nt = det.na, targets.shape[0] # number of anchors, targets
507
  tcls, tbox, indices, anch = [], [], [], []
508
+ gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
509
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
510
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
511
+
512
+ g = 0.5 # bias
513
+ off = torch.tensor([[0, 0],
514
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
515
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
516
+ ], device=targets.device).float() * g # offsets
517
 
 
 
518
  for i in range(det.nl):
519
  anchors = det.anchors[i]
520
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
521
 
522
  # Match targets to anchors
523
+ t, offsets = targets * gain, 0
524
  if nt:
525
+ # Matches
526
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
527
  j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
528
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
529
+ t = t[j] # filter
530
 
531
+ # Offsets
532
  gxy = t[:, 2:4] # grid xy
533
+ gxi = gain[[2, 3]] - gxy # inverse
534
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
535
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
536
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
537
+ t = t.repeat((5, 1, 1))[j]
538
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
 
 
 
 
539
 
540
  # Define
541
  b, c = t[:, :2].long().T # image, class
 
545
  gi, gj = gij.T # grid xy indices
546
 
547
  # Append
548
+ a = t[:, 6].long() # anchor indices
549
  indices.append((b, a, gj, gi)) # image, anchor, grid indices
550
  tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
551
  anch.append(anchors[a]) # anchors
 
592
 
593
  # Detections matrix nx6 (xyxy, conf, cls)
594
  if multi_label:
595
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
596
  x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
597
  else: # best class only
598
  conf, j = x[:, 5:].max(1, keepdim=True)