glenn-jocher
commited on
Commit
•
c09fb2a
1
Parent(s):
932dc78
Update TQDM bar format (#6988)
Browse files- utils/autoanchor.py +1 -1
- utils/datasets.py +4 -3
utils/autoanchor.py
CHANGED
@@ -152,7 +152,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|
152 |
|
153 |
# Evolve
|
154 |
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
155 |
-
pbar = tqdm(range(gen),
|
156 |
for _ in pbar:
|
157 |
v = np.ones(sh)
|
158 |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
|
|
152 |
|
153 |
# Evolve
|
154 |
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
155 |
+
pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
156 |
for _ in pbar:
|
157 |
v = np.ones(sh)
|
158 |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
utils/datasets.py
CHANGED
@@ -35,6 +35,7 @@ from utils.torch_utils import torch_distributed_zero_first
|
|
35 |
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
36 |
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
37 |
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
|
|
38 |
|
39 |
# Get orientation exif tag
|
40 |
for orientation in ExifTags.TAGS.keys():
|
@@ -427,7 +428,7 @@ class LoadImagesAndLabels(Dataset):
|
|
427 |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
428 |
if exists:
|
429 |
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
430 |
-
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
|
431 |
if cache['msgs']:
|
432 |
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
433 |
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
|
@@ -492,7 +493,7 @@ class LoadImagesAndLabels(Dataset):
|
|
492 |
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
493 |
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
494 |
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
495 |
-
pbar = tqdm(enumerate(results), total=n)
|
496 |
for i, x in pbar:
|
497 |
if cache_images == 'disk':
|
498 |
gb += self.npy_files[i].stat().st_size
|
@@ -509,7 +510,7 @@ class LoadImagesAndLabels(Dataset):
|
|
509 |
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
|
510 |
with Pool(NUM_THREADS) as pool:
|
511 |
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
512 |
-
desc=desc, total=len(self.im_files))
|
513 |
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
514 |
nm += nm_f
|
515 |
nf += nf_f
|
|
|
35 |
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
36 |
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
37 |
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
38 |
+
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
|
39 |
|
40 |
# Get orientation exif tag
|
41 |
for orientation in ExifTags.TAGS.keys():
|
|
|
428 |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
429 |
if exists:
|
430 |
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
431 |
+
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
|
432 |
if cache['msgs']:
|
433 |
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
434 |
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
|
|
|
493 |
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
494 |
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
495 |
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
496 |
+
pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT)
|
497 |
for i, x in pbar:
|
498 |
if cache_images == 'disk':
|
499 |
gb += self.npy_files[i].stat().st_size
|
|
|
510 |
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
|
511 |
with Pool(NUM_THREADS) as pool:
|
512 |
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
513 |
+
desc=desc, total=len(self.im_files), bar_format=BAR_FORMAT)
|
514 |
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
515 |
nm += nm_f
|
516 |
nf += nf_f
|