burhan glenn-jocher commited on
Commit
c949fc8
1 Parent(s): c5c647e

Detection cropping+saving feature addition for detect.py and PyTorch Hub (#2827)

Browse files

* Update detect.py

* Update detect.py

* Update greetings.yml

* Update cropping

* cleanup

* Update increment_path()

* Update common.py

* Update detect.py

* Update detect.py

* Update detect.py

* Update common.py

* cleanup

* Update detect.py

Co-authored-by: Glenn Jocher <[email protected]>

Files changed (5) hide show
  1. detect.py +11 -7
  2. models/common.py +20 -12
  3. test.py +1 -1
  4. train.py +3 -3
  5. utils/general.py +21 -6
detect.py CHANGED
@@ -10,19 +10,19 @@ from numpy import random
10
  from models.experimental import attempt_load
11
  from utils.datasets import LoadStreams, LoadImages
12
  from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13
- scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14
  from utils.plots import plot_one_box
15
  from utils.torch_utils import select_device, load_classifier, time_synchronized
16
 
17
 
18
- def detect(save_img=False):
19
  source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
20
  save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21
  webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22
  ('rtsp://', 'rtmp://', 'http://', 'https://'))
23
 
24
  # Directories
25
- save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26
  (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27
 
28
  # Initialize
@@ -84,7 +84,7 @@ def detect(save_img=False):
84
  if webcam: # batch_size >= 1
85
  p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
86
  else:
87
- p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
88
 
89
  p = Path(p) # to Path
90
  save_path = str(save_dir / p.name) # img.jpg
@@ -108,9 +108,12 @@ def detect(save_img=False):
108
  with open(txt_path + '.txt', 'a') as f:
109
  f.write(('%g ' * len(line)).rstrip() % line + '\n')
110
 
111
- if save_img or view_img: # Add bbox to image
112
- label = f'{names[int(cls)]} {conf:.2f}'
113
- plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
 
 
 
114
 
115
  # Print time (inference + NMS)
116
  print(f'{s}Done. ({t2 - t1:.3f}s)')
@@ -157,6 +160,7 @@ if __name__ == '__main__':
157
  parser.add_argument('--view-img', action='store_true', help='display results')
158
  parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
159
  parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
 
160
  parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
161
  parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
162
  parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
 
10
  from models.experimental import attempt_load
11
  from utils.datasets import LoadStreams, LoadImages
12
  from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
14
  from utils.plots import plot_one_box
15
  from utils.torch_utils import select_device, load_classifier, time_synchronized
16
 
17
 
18
+ def detect():
19
  source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
20
  save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21
  webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22
  ('rtsp://', 'rtmp://', 'http://', 'https://'))
23
 
24
  # Directories
25
+ save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
26
  (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27
 
28
  # Initialize
 
84
  if webcam: # batch_size >= 1
85
  p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
86
  else:
87
+ p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
88
 
89
  p = Path(p) # to Path
90
  save_path = str(save_dir / p.name) # img.jpg
 
108
  with open(txt_path + '.txt', 'a') as f:
109
  f.write(('%g ' * len(line)).rstrip() % line + '\n')
110
 
111
+ if save_img or opt.save_crop or view_img: # Add bbox to image
112
+ c = int(cls) # integer class
113
+ label = f'{names[c]} {conf:.2f}'
114
+ plot_one_box(xyxy, im0, label=label, color=colors[c], line_thickness=3)
115
+ if opt.save_crop:
116
+ save_one_box(xyxy, im0s, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
117
 
118
  # Print time (inference + NMS)
119
  print(f'{s}Done. ({t2 - t1:.3f}s)')
 
160
  parser.add_argument('--view-img', action='store_true', help='display results')
161
  parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
162
  parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
163
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
164
  parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
165
  parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
166
  parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
models/common.py CHANGED
@@ -13,7 +13,7 @@ from PIL import Image
13
  from torch.cuda import amp
14
 
15
  from utils.datasets import letterbox
16
- from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
17
  from utils.plots import color_list, plot_one_box
18
  from utils.torch_utils import time_synchronized
19
 
@@ -311,29 +311,33 @@ class Detections:
311
  self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
312
  self.s = shape # inference BCHW shape
313
 
314
- def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
315
  colors = color_list()
316
- for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
317
- str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
318
  if pred is not None:
319
  for c in pred[:, -1].unique():
320
  n = (pred[:, -1] == c).sum() # detections per class
321
  str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
322
- if show or save or render:
323
  for *box, conf, cls in pred: # xyxy, confidence, class
324
  label = f'{self.names[int(cls)]} {conf:.2f}'
325
- plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
326
- img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
 
 
 
 
327
  if pprint:
328
  print(str.rstrip(', '))
329
  if show:
330
- img.show(self.files[i]) # show
331
  if save:
332
  f = self.files[i]
333
- img.save(Path(save_dir) / f) # save
334
  print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
335
  if render:
336
- self.imgs[i] = np.asarray(img)
337
 
338
  def print(self):
339
  self.display(pprint=True) # print results
@@ -343,10 +347,14 @@ class Detections:
343
  self.display(show=True) # show results
344
 
345
  def save(self, save_dir='runs/hub/exp'):
346
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
347
- Path(save_dir).mkdir(parents=True, exist_ok=True)
348
  self.display(save=True, save_dir=save_dir) # save results
349
 
 
 
 
 
 
350
  def render(self):
351
  self.display(render=True) # render results
352
  return self.imgs
 
13
  from torch.cuda import amp
14
 
15
  from utils.datasets import letterbox
16
+ from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box
17
  from utils.plots import color_list, plot_one_box
18
  from utils.torch_utils import time_synchronized
19
 
 
311
  self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
312
  self.s = shape # inference BCHW shape
313
 
314
+ def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
315
  colors = color_list()
316
+ for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
317
+ str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
318
  if pred is not None:
319
  for c in pred[:, -1].unique():
320
  n = (pred[:, -1] == c).sum() # detections per class
321
  str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
322
+ if show or save or render or crop:
323
  for *box, conf, cls in pred: # xyxy, confidence, class
324
  label = f'{self.names[int(cls)]} {conf:.2f}'
325
+ if crop:
326
+ save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
327
+ else: # all others
328
+ plot_one_box(box, im, label=label, color=colors[int(cls) % 10])
329
+
330
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
331
  if pprint:
332
  print(str.rstrip(', '))
333
  if show:
334
+ im.show(self.files[i]) # show
335
  if save:
336
  f = self.files[i]
337
+ im.save(save_dir / f) # save
338
  print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
339
  if render:
340
+ self.imgs[i] = np.asarray(im)
341
 
342
  def print(self):
343
  self.display(pprint=True) # print results
 
347
  self.display(show=True) # show results
348
 
349
  def save(self, save_dir='runs/hub/exp'):
350
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
 
351
  self.display(save=True, save_dir=save_dir) # save results
352
 
353
+ def crop(self, save_dir='runs/hub/exp'):
354
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
355
+ self.display(crop=True, save_dir=save_dir) # crop results
356
+ print(f'Saved results to {save_dir}\n')
357
+
358
  def render(self):
359
  self.display(render=True) # render results
360
  return self.imgs
test.py CHANGED
@@ -49,7 +49,7 @@ def test(data,
49
  device = select_device(opt.device, batch_size=batch_size)
50
 
51
  # Directories
52
- save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
53
  (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
54
 
55
  # Load model
 
49
  device = select_device(opt.device, batch_size=batch_size)
50
 
51
  # Directories
52
+ save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
53
  (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
54
 
55
  # Load model
train.py CHANGED
@@ -41,7 +41,7 @@ logger = logging.getLogger(__name__)
41
  def train(hyp, opt, device, tb_writer=None):
42
  logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
43
  save_dir, epochs, batch_size, total_batch_size, weights, rank = \
44
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
45
 
46
  # Directories
47
  wdir = save_dir / 'weights'
@@ -69,7 +69,7 @@ def train(hyp, opt, device, tb_writer=None):
69
  if rank in [-1, 0]:
70
  opt.hyp = hyp # add hyperparameters
71
  run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
72
- wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
73
  loggers['wandb'] = wandb_logger.wandb
74
  data_dict = wandb_logger.data_dict
75
  if wandb_logger.wandb:
@@ -577,7 +577,7 @@ if __name__ == '__main__':
577
  assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
578
  opt.notest, opt.nosave = True, True # only test/save final epoch
579
  # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
580
- yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
581
  if opt.bucket:
582
  os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
583
 
 
41
  def train(hyp, opt, device, tb_writer=None):
42
  logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
43
  save_dir, epochs, batch_size, total_batch_size, weights, rank = \
44
+ opt.save_dir, opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
45
 
46
  # Directories
47
  wdir = save_dir / 'weights'
 
69
  if rank in [-1, 0]:
70
  opt.hyp = hyp # add hyperparameters
71
  run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
72
+ wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
73
  loggers['wandb'] = wandb_logger.wandb
74
  data_dict = wandb_logger.data_dict
75
  if wandb_logger.wandb:
 
577
  assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
578
  opt.notest, opt.nosave = True, True # only test/save final epoch
579
  # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
580
+ yaml_file = opt.save_dir / 'hyp_evolved.yaml' # save best result here
581
  if opt.bucket:
582
  os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
583
 
utils/general.py CHANGED
@@ -557,7 +557,7 @@ def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
557
 
558
 
559
  def apply_classifier(x, model, img, im0):
560
- # applies a second stage classifier to yolo outputs
561
  im0 = [im0] if isinstance(im0, np.ndarray) else im0
562
  for i, d in enumerate(x): # per image
563
  if d is not None and len(d):
@@ -591,16 +591,31 @@ def apply_classifier(x, model, img, im0):
591
  return x
592
 
593
 
594
- def increment_path(path, exist_ok=False, sep=''):
 
 
 
 
 
 
 
 
 
 
 
 
 
595
  # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
596
  path = Path(path) # os-agnostic
597
- if not path.exists() or exist_ok:
598
- return str(path)
599
- else:
600
  suffix = path.suffix
601
  path = path.with_suffix('')
602
  dirs = glob.glob(f"{path}{sep}*") # similar paths
603
  matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
604
  i = [int(m.groups()[0]) for m in matches if m] # indices
605
  n = max(i) + 1 if i else 2 # increment number
606
- return f"{path}{sep}{n}{suffix}" # update path
 
 
 
 
 
557
 
558
 
559
  def apply_classifier(x, model, img, im0):
560
+ # Apply a second stage classifier to yolo outputs
561
  im0 = [im0] if isinstance(im0, np.ndarray) else im0
562
  for i, d in enumerate(x): # per image
563
  if d is not None and len(d):
 
591
  return x
592
 
593
 
594
+ def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False):
595
+ # Save an image crop as {file} with crop size multiplied by {gain} and padded by {pad} pixels
596
+ xyxy = torch.tensor(xyxy).view(-1, 4)
597
+ b = xyxy2xywh(xyxy) # boxes
598
+ if square:
599
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
600
+ b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
601
+ xyxy = xywh2xyxy(b).long()
602
+ clip_coords(xyxy, im.shape)
603
+ crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2])]
604
+ cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop if BGR else crop[..., ::-1])
605
+
606
+
607
+ def increment_path(path, exist_ok=False, sep='', mkdir=False):
608
  # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
609
  path = Path(path) # os-agnostic
610
+ if path.exists() and not exist_ok:
 
 
611
  suffix = path.suffix
612
  path = path.with_suffix('')
613
  dirs = glob.glob(f"{path}{sep}*") # similar paths
614
  matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
615
  i = [int(m.groups()[0]) for m in matches if m] # indices
616
  n = max(i) + 1 if i else 2 # increment number
617
+ path = Path(f"{path}{sep}{n}{suffix}") # update path
618
+ dir = path if path.suffix == '' else path.parent # directory
619
+ if not dir.exists() and mkdir:
620
+ dir.mkdir(parents=True, exist_ok=True) # make directory
621
+ return path