glenn-jocher commited on
Commit
c9798ae
1 Parent(s): 0f2057e

Update plot_study_txt() (#1533)

Browse files
Files changed (1) hide show
  1. utils/plots.py +5 -6
utils/plots.py CHANGED
@@ -1,13 +1,13 @@
1
  # Plotting utils
2
 
3
  import glob
4
- import math
5
  import os
6
  import random
7
  from copy import copy
8
  from pathlib import Path
9
 
10
  import cv2
 
11
  import matplotlib
12
  import matplotlib.pyplot as plt
13
  import numpy as np
@@ -218,13 +218,13 @@ def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
218
  plt.savefig('targets.jpg', dpi=200)
219
 
220
 
221
- def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_study_txt()
222
  # Plot study.txt generated by test.py
223
  fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
224
  ax = ax.ravel()
225
 
226
  fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
227
- for f in ['study/study_coco_%s.txt' % x for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
228
  y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
229
  x = np.arange(y.shape[1]) if x is None else np.array(x)
230
  s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
@@ -234,7 +234,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_st
234
 
235
  j = y[3].argmax() + 1
236
  ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
237
- label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
238
 
239
  ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
240
  'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
@@ -246,8 +246,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_st
246
  ax2.set_xlabel('GPU Speed (ms/img)')
247
  ax2.set_ylabel('COCO AP val')
248
  ax2.legend(loc='lower right')
249
- plt.savefig('study_mAP_latency.png', dpi=300)
250
- plt.savefig(f.replace('.txt', '.png'), dpi=300)
251
 
252
 
253
  def plot_labels(labels, save_dir=''):
 
1
  # Plotting utils
2
 
3
  import glob
 
4
  import os
5
  import random
6
  from copy import copy
7
  from pathlib import Path
8
 
9
  import cv2
10
+ import math
11
  import matplotlib
12
  import matplotlib.pyplot as plt
13
  import numpy as np
 
218
  plt.savefig('targets.jpg', dpi=200)
219
 
220
 
221
+ def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
222
  # Plot study.txt generated by test.py
223
  fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
224
  ax = ax.ravel()
225
 
226
  fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
227
+ for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
228
  y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
229
  x = np.arange(y.shape[1]) if x is None else np.array(x)
230
  s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
 
234
 
235
  j = y[3].argmax() + 1
236
  ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
237
+ label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
238
 
239
  ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
240
  'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
 
246
  ax2.set_xlabel('GPU Speed (ms/img)')
247
  ax2.set_ylabel('COCO AP val')
248
  ax2.legend(loc='lower right')
249
+ plt.savefig('test_study.png', dpi=300)
 
250
 
251
 
252
  def plot_labels(labels, save_dir=''):