Commit
•
d9b4e6b
1
Parent(s):
bd6f6a7
Add `--include torchscript onnx coreml` argument (#3137)
Browse files* Allow users to skip exporting in formats that they don't care about
* Correct comments
* Update export.py
renamed --skip-format to --exclude
* Switched format from exclude to include (as instructed by
@glenn-jocher
)
* cleanup
Co-authored-by: Glenn Jocher <[email protected]>
- models/export.py +61 -55
models/export.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
"""Exports a YOLOv5 *.pt model to ONNX
|
2 |
|
3 |
Usage:
|
4 |
-
$
|
5 |
"""
|
6 |
|
7 |
import argparse
|
@@ -27,6 +27,7 @@ if __name__ == '__main__':
|
|
27 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
28 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
29 |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
|
30 |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
31 |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
32 |
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
@@ -35,6 +36,7 @@ if __name__ == '__main__':
|
|
35 |
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
|
36 |
opt = parser.parse_args()
|
37 |
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
|
|
38 |
print(opt)
|
39 |
set_logging()
|
40 |
t = time.time()
|
@@ -47,7 +49,7 @@ if __name__ == '__main__':
|
|
47 |
# Checks
|
48 |
gs = int(max(model.stride)) # grid size (max stride)
|
49 |
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
50 |
-
assert not (opt.device.lower() ==
|
51 |
|
52 |
# Input
|
53 |
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
@@ -74,62 +76,66 @@ if __name__ == '__main__':
|
|
74 |
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
|
75 |
|
76 |
# TorchScript export -----------------------------------------------------------------------------------------------
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
# ONNX export ------------------------------------------------------------------------------------------------------
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
|
121 |
# CoreML export ----------------------------------------------------------------------------------------------------
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
# Finish
|
135 |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|
|
|
1 |
+
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
2 |
|
3 |
Usage:
|
4 |
+
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
5 |
"""
|
6 |
|
7 |
import argparse
|
|
|
27 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
28 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
29 |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
30 |
+
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
|
31 |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
32 |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
33 |
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
|
|
36 |
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
|
37 |
opt = parser.parse_args()
|
38 |
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
39 |
+
opt.include = [x.lower() for x in opt.include]
|
40 |
print(opt)
|
41 |
set_logging()
|
42 |
t = time.time()
|
|
|
49 |
# Checks
|
50 |
gs = int(max(model.stride)) # grid size (max stride)
|
51 |
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
52 |
+
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
|
53 |
|
54 |
# Input
|
55 |
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
|
|
76 |
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
|
77 |
|
78 |
# TorchScript export -----------------------------------------------------------------------------------------------
|
79 |
+
if 'torchscript' in opt.include or 'coreml' in opt.include:
|
80 |
+
prefix = colorstr('TorchScript:')
|
81 |
+
try:
|
82 |
+
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
83 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
84 |
+
ts = torch.jit.trace(model, img, strict=False)
|
85 |
+
(optimize_for_mobile(ts) if opt.optimize else ts).save(f)
|
86 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
87 |
+
except Exception as e:
|
88 |
+
print(f'{prefix} export failure: {e}')
|
89 |
|
90 |
# ONNX export ------------------------------------------------------------------------------------------------------
|
91 |
+
if 'onnx' in opt.include:
|
92 |
+
prefix = colorstr('ONNX:')
|
93 |
+
try:
|
94 |
+
import onnx
|
95 |
+
|
96 |
+
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
97 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
98 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
99 |
+
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
100 |
+
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
101 |
+
|
102 |
+
# Checks
|
103 |
+
model_onnx = onnx.load(f) # load onnx model
|
104 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
105 |
+
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
106 |
+
|
107 |
+
# Simplify
|
108 |
+
if opt.simplify:
|
109 |
+
try:
|
110 |
+
check_requirements(['onnx-simplifier'])
|
111 |
+
import onnxsim
|
112 |
+
|
113 |
+
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
114 |
+
model_onnx, check = onnxsim.simplify(
|
115 |
+
model_onnx,
|
116 |
+
dynamic_input_shape=opt.dynamic,
|
117 |
+
input_shapes={'images': list(img.shape)} if opt.dynamic else None)
|
118 |
+
assert check, 'assert check failed'
|
119 |
+
onnx.save(model_onnx, f)
|
120 |
+
except Exception as e:
|
121 |
+
print(f'{prefix} simplifier failure: {e}')
|
122 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
123 |
+
except Exception as e:
|
124 |
+
print(f'{prefix} export failure: {e}')
|
125 |
|
126 |
# CoreML export ----------------------------------------------------------------------------------------------------
|
127 |
+
if 'coreml' in opt.include:
|
128 |
+
prefix = colorstr('CoreML:')
|
129 |
+
try:
|
130 |
+
import coremltools as ct
|
131 |
+
|
132 |
+
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
133 |
+
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
134 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
135 |
+
model.save(f)
|
136 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
137 |
+
except Exception as e:
|
138 |
+
print(f'{prefix} export failure: {e}')
|
139 |
|
140 |
# Finish
|
141 |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|