glenn-jocher
commited on
Commit
•
db2c3ac
1
Parent(s):
915b148
updated testing settings, rebalanced towards FP16 latency
Browse files- test.py +2 -2
- utils/utils.py +1 -1
test.py
CHANGED
@@ -35,7 +35,7 @@ def test(data,
|
|
35 |
google_utils.attempt_download(weights)
|
36 |
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
|
37 |
torch_utils.model_info(model)
|
38 |
-
|
39 |
model.to(device)
|
40 |
if half:
|
41 |
model.half() # to FP16
|
@@ -71,7 +71,7 @@ def test(data,
|
|
71 |
batch_size,
|
72 |
rect=True, # rectangular inference
|
73 |
single_cls=opt.single_cls, # single class mode
|
74 |
-
pad=0.
|
75 |
batch_size = min(batch_size, len(dataset))
|
76 |
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
|
77 |
dataloader = DataLoader(dataset,
|
|
|
35 |
google_utils.attempt_download(weights)
|
36 |
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
|
37 |
torch_utils.model_info(model)
|
38 |
+
model.fuse()
|
39 |
model.to(device)
|
40 |
if half:
|
41 |
model.half() # to FP16
|
|
|
71 |
batch_size,
|
72 |
rect=True, # rectangular inference
|
73 |
single_cls=opt.single_cls, # single class mode
|
74 |
+
pad=0.5) # padding
|
75 |
batch_size = min(batch_size, len(dataset))
|
76 |
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
|
77 |
dataloader = DataLoader(dataset,
|
utils/utils.py
CHANGED
@@ -528,7 +528,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c
|
|
528 |
fast |= conf_thres > 0.001 # fast mode
|
529 |
if fast:
|
530 |
merge = False
|
531 |
-
multi_label =
|
532 |
else:
|
533 |
merge = True # merge for best mAP (adds 0.5ms/img)
|
534 |
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
|
|
528 |
fast |= conf_thres > 0.001 # fast mode
|
529 |
if fast:
|
530 |
merge = False
|
531 |
+
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
532 |
else:
|
533 |
merge = True # merge for best mAP (adds 0.5ms/img)
|
534 |
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|