JirkaB commited on
Commit
e8ea772
β€’
1 Parent(s): ef6f5b3

revert test module to confuse users...

Browse files
.github/workflows/ci-testing.yml CHANGED
@@ -71,9 +71,9 @@ jobs:
71
  # detect custom
72
  python detect.py --weights runs/exp0/weights/last.pt --device $di
73
  # test official
74
- python eval.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 1
75
  # test custom
76
- python eval.py --weights runs/exp0/weights/last.pt --device $di --batch-size 1
77
  # inspect
78
  python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
79
  # export
 
71
  # detect custom
72
  python detect.py --weights runs/exp0/weights/last.pt --device $di
73
  # test official
74
+ python test.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 1
75
  # test custom
76
+ python test.py --weights runs/exp0/weights/last.pt --device $di --batch-size 1
77
  # inspect
78
  python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
79
  # export
README.md CHANGED
@@ -27,8 +27,8 @@ This repository represents Ultralytics open-source research into future object d
27
 
28
 
29
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
30
- ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python eval.py --data coco.yaml --img 736 --conf 0.001`
31
- ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python eval.py --data coco.yaml --img 640 --conf 0.1`
32
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
33
 
34
 
 
27
 
28
 
29
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
30
+ ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
31
+ ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
32
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
33
 
34
 
eval.py β†’ test.py RENAMED
@@ -233,7 +233,7 @@ def test(data,
233
 
234
 
235
  if __name__ == '__main__':
236
- parser = argparse.ArgumentParser(prog='eval.py')
237
  parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
238
  parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
239
  parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
 
233
 
234
 
235
  if __name__ == '__main__':
236
+ parser = argparse.ArgumentParser(prog='test.py')
237
  parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
238
  parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
239
  parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
train.py CHANGED
@@ -7,7 +7,7 @@ import torch.optim.lr_scheduler as lr_scheduler
7
  import torch.utils.data
8
  from torch.utils.tensorboard import SummaryWriter
9
 
10
- import eval # import eval.py to get mAP after each epoch
11
  from models.yolo import Model
12
  from utils import google_utils
13
  from utils.datasets import *
@@ -291,7 +291,7 @@ def train(hyp):
291
  ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
292
  final_epoch = epoch + 1 == epochs
293
  if not opt.notest or final_epoch: # Calculate mAP
294
- results, maps, times = eval.test(opt.data,
295
  batch_size=batch_size,
296
  imgsz=imgsz_test,
297
  save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
 
7
  import torch.utils.data
8
  from torch.utils.tensorboard import SummaryWriter
9
 
10
+ import test # import test.py to get mAP after each epoch
11
  from models.yolo import Model
12
  from utils import google_utils
13
  from utils.datasets import *
 
291
  ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
292
  final_epoch = epoch + 1 == epochs
293
  if not opt.notest or final_epoch: # Calculate mAP
294
+ results, maps, times = test.test(opt.data,
295
  batch_size=batch_size,
296
  imgsz=imgsz_test,
297
  save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
tutorial.ipynb CHANGED
@@ -236,7 +236,7 @@
236
  },
237
  "source": [
238
  "# Run YOLOv5x on COCO val2017\n",
239
- "!python eval.py --weights yolov5x.pt --data coco.yaml --img 672"
240
  ],
241
  "execution_count": null,
242
  "outputs": [
@@ -319,7 +319,7 @@
319
  },
320
  "source": [
321
  "# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
322
- "!python eval.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
323
  ],
324
  "execution_count": null,
325
  "outputs": []
@@ -717,7 +717,7 @@
717
  "for x in best*\n",
718
  "do\n",
719
  " gsutil cp gs://*/*/*/$x.pt .\n",
720
- " python eval.py --weights $x.pt --data coco.yaml --img 672\n",
721
  "done"
722
  ],
723
  "execution_count": null,
@@ -744,8 +744,8 @@
744
  " do\n",
745
  " python detect.py --weights $x.pt --device $di # detect official\n",
746
  " python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
747
- " python eval.py --weights $x.pt --device $di # test official\n",
748
- " python eval.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
749
  " done\n",
750
  " python models/yolo.py --cfg $x.yaml # inspect\n",
751
  " python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
 
236
  },
237
  "source": [
238
  "# Run YOLOv5x on COCO val2017\n",
239
+ "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
240
  ],
241
  "execution_count": null,
242
  "outputs": [
 
319
  },
320
  "source": [
321
  "# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
322
+ "!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
323
  ],
324
  "execution_count": null,
325
  "outputs": []
 
717
  "for x in best*\n",
718
  "do\n",
719
  " gsutil cp gs://*/*/*/$x.pt .\n",
720
+ " python test.py --weights $x.pt --data coco.yaml --img 672\n",
721
  "done"
722
  ],
723
  "execution_count": null,
 
744
  " do\n",
745
  " python detect.py --weights $x.pt --device $di # detect official\n",
746
  " python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
747
+ " python test.py --weights $x.pt --device $di # test official\n",
748
+ " python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
749
  " done\n",
750
  " python models/yolo.py --cfg $x.yaml # inspect\n",
751
  " python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
utils/utils.py CHANGED
@@ -1087,7 +1087,7 @@ def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
1087
 
1088
 
1089
  def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
1090
- # Plot study.txt generated by eval.py
1091
  fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
1092
  ax = ax.ravel()
1093
 
 
1087
 
1088
 
1089
  def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
1090
+ # Plot study.txt generated by test.py
1091
  fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
1092
  ax = ax.ravel()
1093