JirkaB commited on
Commit
eac0dbc
1 Parent(s): da6c7ce
Files changed (3) hide show
  1. .github/workflows/ci-testing.yml +2 -2
  2. README.md +2 -2
  3. tutorial.ipynb +5 -5
.github/workflows/ci-testing.yml CHANGED
@@ -69,9 +69,9 @@ jobs:
69
  # detect custom
70
  python detect.py --weights runs/exp0/weights/last.pt --device $di
71
  # test official
72
- python test.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2
73
  # test custom
74
- python test.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2
75
  # inspect
76
  python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
77
  # export
 
69
  # detect custom
70
  python detect.py --weights runs/exp0/weights/last.pt --device $di
71
  # test official
72
+ python eval.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2
73
  # test custom
74
+ python eval.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2
75
  # inspect
76
  python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
77
  # export
README.md CHANGED
@@ -27,8 +27,8 @@ This repository represents Ultralytics open-source research into future object d
27
 
28
 
29
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
30
- ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
31
- ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
32
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
33
 
34
 
 
27
 
28
 
29
  ** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
30
+ ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python eval.py --data coco.yaml --img 736 --conf 0.001`
31
+ ** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python eval.py --data coco.yaml --img 640 --conf 0.1`
32
  ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
33
 
34
 
tutorial.ipynb CHANGED
@@ -236,7 +236,7 @@
236
  },
237
  "source": [
238
  "# Run YOLOv5x on COCO val2017\n",
239
- "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
240
  ],
241
  "execution_count": null,
242
  "outputs": [
@@ -319,7 +319,7 @@
319
  },
320
  "source": [
321
  "# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
322
- "!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
323
  ],
324
  "execution_count": null,
325
  "outputs": []
@@ -717,7 +717,7 @@
717
  "for x in best*\n",
718
  "do\n",
719
  " gsutil cp gs://*/*/*/$x.pt .\n",
720
- " python test.py --weights $x.pt --data coco.yaml --img 672\n",
721
  "done"
722
  ],
723
  "execution_count": null,
@@ -744,8 +744,8 @@
744
  " do\n",
745
  " python detect.py --weights $x.pt --device $di # detect official\n",
746
  " python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
747
- " python test.py --weights $x.pt --device $di # test official\n",
748
- " python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
749
  " done\n",
750
  " python models/yolo.py --cfg $x.yaml # inspect\n",
751
  " python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
 
236
  },
237
  "source": [
238
  "# Run YOLOv5x on COCO val2017\n",
239
+ "!python eval.py --weights yolov5x.pt --data coco.yaml --img 672"
240
  ],
241
  "execution_count": null,
242
  "outputs": [
 
319
  },
320
  "source": [
321
  "# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
322
+ "!python eval.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
323
  ],
324
  "execution_count": null,
325
  "outputs": []
 
717
  "for x in best*\n",
718
  "do\n",
719
  " gsutil cp gs://*/*/*/$x.pt .\n",
720
+ " python eval.py --weights $x.pt --data coco.yaml --img 672\n",
721
  "done"
722
  ],
723
  "execution_count": null,
 
744
  " do\n",
745
  " python detect.py --weights $x.pt --device $di # detect official\n",
746
  " python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
747
+ " python eval.py --weights $x.pt --device $di # test official\n",
748
+ " python eval.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
749
  " done\n",
750
  " python models/yolo.py --cfg $x.yaml # inspect\n",
751
  " python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",