import glob import logging import math import os import platform import random import shutil import subprocess import time from contextlib import contextmanager from copy import copy from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torchvision import yaml from scipy.cluster.vq import kmeans from scipy.signal import butter, filtfilt from tqdm import tqdm from utils.torch_utils import init_seeds as init_torch_seeds from utils.torch_utils import is_parallel # Set printoptions torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 matplotlib.rc('font', **{'size': 11}) # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) @contextmanager def torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def set_logging(rank=-1): logging.basicConfig( format="%(message)s", level=logging.INFO if rank in [-1, 0] else logging.WARN) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) init_torch_seeds(seed=seed) def get_latest_run(search_dir='./runs'): # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) return max(last_list, key=os.path.getctime) if last_list else '' def check_git_status(): # Suggest 'git pull' if repo is out of date if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'): s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') if 'Your branch is behind' in s: print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') def check_img_size(img_size, s=32): # Verify img_size is a multiple of stride s new_size = make_divisible(img_size, int(s)) # ceil gs-multiple if new_size != img_size: print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) return new_size def check_anchors(dataset, model, thr=4.0, imgsz=640): # Check anchor fit to data, recompute if necessary print('\nAnalyzing anchors... ', end='') m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh def metric(k): # compute metric r = wh[:, None] / k[None] x = torch.min(r, 1. / r).min(2)[0] # ratio metric best = x.max(1)[0] # best_x aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold bpr = (best > 1. / thr).float().mean() # best possible recall return bpr, aat bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2)) print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='') if bpr < 0.98: # threshold to recompute print('. Attempting to generate improved anchors, please wait...' % bpr) na = m.anchor_grid.numel() // 2 # number of anchors new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) new_bpr = metric(new_anchors.reshape(-1, 2))[0] if new_bpr > bpr: # replace anchors new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors) m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss check_anchor_order(m) print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') else: print('Original anchors better than new anchors. Proceeding with original anchors.') print('') # newline def check_anchor_order(m): # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary a = m.anchor_grid.prod(-1).view(-1) # anchor area da = a[-1] - a[0] # delta a ds = m.stride[-1] - m.stride[0] # delta s if da.sign() != ds.sign(): # same order print('Reversing anchor order') m.anchors[:] = m.anchors.flip(0) m.anchor_grid[:] = m.anchor_grid.flip(0) def check_file(file): # Search for file if not found if os.path.isfile(file) or file == '': return file else: files = glob.glob('./**/' + file, recursive=True) # find file assert len(files), 'File Not Found: %s' % file # assert file was found return files[0] # return first file if multiple found def check_dataset(dict): # Download dataset if not found val, s = dict.get('val'), dict.get('download') if val and len(val): val = [os.path.abspath(x) for x in (val if isinstance(val, list) else [val])] # val path if not all(os.path.exists(x) for x in val): print('\nWARNING: Dataset not found, nonexistant paths: %s' % [*val]) if s and len(s): # download script print('Downloading %s ...' % s) if s.startswith('http') and s.endswith('.zip'): # URL f = Path(s).name # filename if platform.system() == 'Darwin': # avoid MacOS python requests certificate error os.system('curl -L %s -o %s' % (s, f)) else: torch.hub.download_url_to_file(s, f) r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip else: # bash script r = os.system(s) print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value else: raise Exception('Dataset not found.') def make_divisible(x, divisor): # Returns x evenly divisble by divisor return math.ceil(x / divisor) * divisor def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurences per class # Prepend gridpoint count (for uCE trianing) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class mAPs n = len(labels) class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)]) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898 s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95) ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) for ci, c in enumerate(unique_classes): i = pred_cls == c n_gt = (target_cls == c).sum() # Number of ground truth objects n_p = i.sum() # Number of predicted objects if n_p == 0 or n_gt == 0: continue else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_gt + 1e-16) # recall curve r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j] = compute_ap(recall[:, j], precision[:, j]) # Plot # fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # ax.plot(recall, precision) # ax.set_xlabel('Recall') # ax.set_ylabel('Precision') # ax.set_xlim(0, 1.01) # ax.set_ylim(0, 1.01) # fig.tight_layout() # fig.savefig('PR_curve.png', dpi=300) # Compute F1 score (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + 1e-16) return p, r, ap, f1, unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)])) mpre = np.concatenate(([0.], precision, [0.])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / ((1 + eps) - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.T) area2 = box_area(box2.T) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) def wh_iou(wh1, wh2): # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N,1,2] wh2 = wh2[None] # [1,M,2] inter = torch.min(wh1, wh2).prod(2) # [N,M] return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): super(BCEBlurWithLogitsLoss, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() def compute_loss(p, targets, model): # predictions, targets, model device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 cp, cn = smooth_BCE(eps=0.0) # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) # Losses nt = 0 # number of targets np = len(p) # number of outputs balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6 for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0], device=device) # target obj n = b.shape[0] # number of targets if n: nt += n # cumulative targets ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # Regression pxy = ps[:, :2].sigmoid() * 2. - 0.5 pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target) lbox += (1.0 - giou).mean() # giou loss # Objectness tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio # Classification if model.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:], cn, device=device) # targets t[range(n), tcls[i]] = cp lcls += BCEcls(ps[:, 5:], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss s = 3 / np # output count scaling lbox *= h['giou'] * s lobj *= h['obj'] * s * (1.4 if np == 4 else 1.) lcls *= h['cls'] * s bs = tobj.shape[0] # batch size loss = lbox + lobj + lcls return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() def build_targets(p, targets, model): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module na, nt = det.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(det.nl): anchors = det.anchors[i] gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj, gi)) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False): """Performs Non-Maximum Suppression (NMS) on inference results Returns: detections with shape: nx6 (x1, y1, x2, y2, conf, cls) """ nc = prediction[0].shape[1] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_det = 300 # maximum number of detections per image time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) t = time.time() output = [None] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 print(x, i, x.shape, i.shape) pass output[xi] = x[i] if (time.time() - t) > time_limit: break # time limit exceeded return output def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer() # Strip optimizer from 'f' to finalize training, optionally save as 's' x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None x['training_results'] = None x['epoch'] = -1 x['model'].half() # to FP16 for p in x['model'].parameters(): p.requires_grad = False torch.save(x, s or f) mb = os.path.getsize(s or f) / 1E6 # filesize print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb)) def coco_class_count(path='../coco/labels/train2014/'): # Histogram of occurrences per class nc = 80 # number classes x = np.zeros(nc, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) print(i, len(files)) def coco_only_people(path='../coco/labels/train2017/'): # from utils.general import *; coco_only_people() # Find images with only people files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) if all(labels[:, 0] == 0): print(labels.shape[0], file) def crop_images_random(path='../images/', scale=0.50): # from utils.general import *; crop_images_random() # crops images into random squares up to scale fraction # WARNING: overwrites images! for file in tqdm(sorted(glob.glob('%s/*.*' % path))): img = cv2.imread(file) # BGR if img is not None: h, w = img.shape[:2] # create random mask a = 30 # minimum size (pixels) mask_h = random.randint(a, int(max(a, h * scale))) # mask height mask_w = mask_h # mask width # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): # Makes single-class coco datasets. from utils.general import *; coco_single_class_labels() if os.path.exists('new/'): shutil.rmtree('new/') # delete output folder os.makedirs('new/') # make new output folder os.makedirs('new/labels/') os.makedirs('new/images/') for file in tqdm(sorted(glob.glob('%s/*.*' % path))): with open(file, 'r') as f: labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) i = labels[:, 0] == label_class if any(i): img_file = file.replace('labels', 'images').replace('txt', 'jpg') labels[:, 0] = 0 # reset class to 0 with open('new/images.txt', 'a') as f: # add image to dataset list f.write(img_file + '\n') with open('new/labels/' + Path(file).name, 'a') as f: # write label for l in labels[i]: f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): """ Creates kmeans-evolved anchors from training dataset Arguments: path: path to dataset *.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm Return: k: kmeans evolved anchors Usage: from utils.general import *; _ = kmean_anchors() """ thr = 1. / thr def metric(k, wh): # compute metrics r = wh[:, None] / k[None] x = torch.min(r, 1. / r).min(2)[0] # ratio metric # x = wh_iou(wh, torch.tensor(k)) # iou metric return x, x.max(1)[0] # x, best_x def fitness(k): # mutation fitness _, best = metric(torch.tensor(k, dtype=torch.float32), wh) return (best * (best > thr).float()).mean() # fitness def print_results(k): k = k[np.argsort(k.prod(1))] # sort small to large x, best = metric(k, wh0) bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % (n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') for i, x in enumerate(k): print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg return k if isinstance(path, str): # *.yaml file with open(path) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict from utils.datasets import LoadImagesAndLabels dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) else: dataset = path # dataset # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: print('WARNING: Extremely small objects found. ' '%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels # Kmeans calculation print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k *= s wh = torch.tensor(wh, dtype=torch.float32) # filtered wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered k = print_results(k) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.tight_layout() # fig.savefig('wh.png', dpi=200) # Evolve npr = np.random f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f if verbose: print_results(k) return print_results(k) def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows x = x[np.argsort(-fitness(x))] # sort np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness # Save yaml for i, k in enumerate(hyp.keys()): hyp[k] = float(x[0, i + 7]) with open(yaml_file, 'w') as f: results = tuple(x[0, :7]) c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') yaml.dump(hyp, f, sort_keys=False) if bucket: os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload def apply_classifier(x, model, img, im0): # applies a second stage classifier to yolo outputs im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('test%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def fitness(x): # Returns fitness (for use with results.txt or evolve.txt) w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] return (x[:, :4] * w).sum(1) def output_to_target(output, width, height): # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] if isinstance(output, torch.Tensor): output = output.cpu().numpy() targets = [] for i, o in enumerate(output): if o is not None: for pred in o: box = pred[:4] w = (box[2] - box[0]) / width h = (box[3] - box[1]) / height x = box[0] / width + w / 2 y = box[1] / height + h / 2 conf = pred[4] cls = int(pred[5]) targets.append([i, cls, x, y, w, h, conf]) return np.array(targets) def increment_dir(dir, comment=''): # Increments a directory runs/exp1 --> runs/exp2_comment n = 0 # number dir = str(Path(dir)) # os-agnostic d = sorted(glob.glob(dir + '*')) # directories if len(d): n = max([int(x[len(dir):x.find('_') if '_' in x else None]) for x in d]) + 1 # increment return dir + str(n) + ('_' + comment if comment else '') # Plotting functions --------------------------------------------------------------------------------------------------- def hist2d(x, y, n=100): # 2d histogram used in labels.png and evolve.png xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) return np.log(hist[xidx, yidx]) def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy def butter_lowpass(cutoff, fs, order): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a b, a = butter_lowpass(cutoff, fs, order=order) return filtfilt(b, a, data) # forward-backward filter def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def plot_wh_methods(): # from utils.general import *; plot_wh_methods() # Compares the two methods for width-height anchor multiplication # https://github.com/ultralytics/yolov3/issues/168 x = np.arange(-4.0, 4.0, .1) ya = np.exp(x) yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 fig = plt.figure(figsize=(6, 3), dpi=150) plt.plot(x, ya, '.-', label='YOLOv3') plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2') plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6') plt.xlim(left=-4, right=4) plt.ylim(bottom=0, top=6) plt.xlabel('input') plt.ylabel('output') plt.grid() plt.legend() fig.tight_layout() fig.savefig('comparison.png', dpi=200) def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): tl = 3 # line thickness tf = max(tl - 1, 1) # font thickness if os.path.isfile(fname): # do not overwrite return None if isinstance(images, torch.Tensor): images = images.cpu().float().numpy() if isinstance(targets, torch.Tensor): targets = targets.cpu().numpy() # un-normalise if np.max(images[0]) <= 1: images *= 255 bs, _, h, w = images.shape # batch size, _, height, width bs = min(bs, max_subplots) # limit plot images ns = np.ceil(bs ** 0.5) # number of subplots (square) # Check if we should resize scale_factor = max_size / max(h, w) if scale_factor < 1: h = math.ceil(scale_factor * h) w = math.ceil(scale_factor * w) # Empty array for output mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # Fix class - colour map prop_cycle = plt.rcParams['axes.prop_cycle'] # https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']] for i, img in enumerate(images): if i == max_subplots: # if last batch has fewer images than we expect break block_x = int(w * (i // ns)) block_y = int(h * (i % ns)) img = img.transpose(1, 2, 0) if scale_factor < 1: img = cv2.resize(img, (w, h)) mosaic[block_y:block_y + h, block_x:block_x + w, :] = img if len(targets) > 0: image_targets = targets[targets[:, 0] == i] boxes = xywh2xyxy(image_targets[:, 2:6]).T classes = image_targets[:, 1].astype('int') gt = image_targets.shape[1] == 6 # ground truth if no conf column conf = None if gt else image_targets[:, 6] # check for confidence presence (gt vs pred) boxes[[0, 2]] *= w boxes[[0, 2]] += block_x boxes[[1, 3]] *= h boxes[[1, 3]] += block_y for j, box in enumerate(boxes.T): cls = int(classes[j]) color = color_lut[cls % len(color_lut)] cls = names[cls] if names else cls if gt or conf[j] > 0.3: # 0.3 conf thresh label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j]) plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) # Draw image filename labels if paths is not None: label = os.path.basename(paths[i])[:40] # trim to 40 char t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, lineType=cv2.LINE_AA) # Image border cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) if fname is not None: mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA) cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) return mosaic def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): # Plot LR simulating training for full epochs optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals y = [] for _ in range(epochs): scheduler.step() y.append(optimizer.param_groups[0]['lr']) plt.plot(y, '.-', label='LR') plt.xlabel('epoch') plt.ylabel('LR') plt.grid() plt.xlim(0, epochs) plt.ylim(0) plt.tight_layout() plt.savefig(Path(save_dir) / 'LR.png', dpi=200) def plot_test_txt(): # from utils.general import *; plot_test() # Plot test.txt histograms x = np.loadtxt('test.txt', dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect('equal') plt.savefig('hist2d.png', dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) plt.savefig('hist1d.png', dpi=200) def plot_targets_txt(): # from utils.general import *; plot_targets_txt() # Plot targets.txt histograms x = np.loadtxt('targets.txt', dtype=np.float32).T s = ['x targets', 'y targets', 'width targets', 'height targets'] fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) ax = ax.ravel() for i in range(4): ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) ax[i].legend() ax[i].set_title(s[i]) plt.savefig('targets.jpg', dpi=200) def plot_study_txt(f='study.txt', x=None): # from utils.general import *; plot_study_txt() # Plot study.txt generated by test.py fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) ax = ax.ravel() fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) for f in ['study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]: y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T x = np.arange(y.shape[1]) if x is None else np.array(x) s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] for i in range(7): ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) ax[i].set_title(s[i]) j = y[3].argmax() + 1 ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8, label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO')) ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') ax2.grid() ax2.set_xlim(0, 30) ax2.set_ylim(28, 50) ax2.set_yticks(np.arange(30, 55, 5)) ax2.set_xlabel('GPU Speed (ms/img)') ax2.set_ylabel('COCO AP val') ax2.legend(loc='lower right') plt.savefig('study_mAP_latency.png', dpi=300) plt.savefig(f.replace('.txt', '.png'), dpi=300) def plot_labels(labels, save_dir=''): # plot dataset labels c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes nc = int(c.max() + 1) # number of classes fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) ax = ax.ravel() ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) ax[0].set_xlabel('classes') ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet') ax[1].set_xlabel('x') ax[1].set_ylabel('y') ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet') ax[2].set_xlabel('width') ax[2].set_ylabel('height') plt.savefig(Path(save_dir) / 'labels.png', dpi=200) plt.close() def plot_evolution(yaml_file='runs/evolve/hyp_evolved.yaml'): # from utils.general import *; plot_evolution() # Plot hyperparameter evolution results in evolve.txt with open(yaml_file) as f: hyp = yaml.load(f, Loader=yaml.FullLoader) x = np.loadtxt('evolve.txt', ndmin=2) f = fitness(x) # weights = (f - f.min()) ** 2 # for weighted results plt.figure(figsize=(10, 10), tight_layout=True) matplotlib.rc('font', **{'size': 8}) for i, (k, v) in enumerate(hyp.items()): y = x[:, i + 7] # mu = (y * weights).sum() / weights.sum() # best weighted result mu = y[f.argmax()] # best single result plt.subplot(5, 5, i + 1) plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') plt.plot(mu, f.max(), 'k+', markersize=15) plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters if i % 5 != 0: plt.yticks([]) print('%15s: %.3g' % (k, mu)) plt.savefig('evolve.png', dpi=200) print('\nPlot saved as evolve.png') def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay() # Plot training 'results*.txt', overlaying train and val losses s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) ax = ax.ravel() for i in range(5): for j in [i, i + 5]: y = results[j, x] ax[i].plot(x, y, marker='.', label=s[j]) # y_smooth = butter_lowpass_filtfilt(y) # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend() ax[i].set_ylabel(f) if i == 0 else None # add filename fig.savefig(f.replace('.txt', '.png'), dpi=200) def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): # from utils.general import *; plot_results() # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training fig, ax = plt.subplots(2, 5, figsize=(12, 6)) ax = ax.ravel() s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', 'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] if bucket: # os.system('rm -rf storage.googleapis.com') # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] files = ['results%g.txt' % x for x in id] c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id) os.system(c) else: files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt') for fi, f in enumerate(files): try: results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): y = results[i, x] if i in [0, 1, 2, 5, 6, 7]: y[y == 0] = np.nan # dont show zero loss values # y /= y[0] # normalize label = labels[fi] if len(labels) else Path(f).stem ax[i].plot(x, y, marker='.', label=label, linewidth=1, markersize=6) ax[i].set_title(s[i]) # if i in [5, 6, 7]: # share train and val loss y axes # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) except Exception as e: print('Warning: Plotting error for %s; %s' % (f, e)) fig.tight_layout() ax[1].legend() fig.savefig(Path(save_dir) / 'results.png', dpi=200)