"""File for accessing YOLOv5 models via PyTorch Hub https://pytorch.org/hub/ultralytics_yolov5/ Usage: import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s') """ from pathlib import Path import torch from models.yolo import Model from utils.general import check_requirements, set_logging from utils.google_utils import attempt_download from utils.torch_utils import select_device dependencies = ['torch', 'yaml'] check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop')) set_logging() def create(name, pretrained, channels, classes, autoshape): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes Returns: pytorch model """ config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path try: model = Model(config, channels, classes) if pretrained: fname = f'{name}.pt' # checkpoint filename attempt_download(fname) # download if not found locally ckpt = torch.load(fname, map_location=torch.device('cpu')) # load state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter model.load_state_dict(state_dict, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute if autoshape: model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available return model.to(device) except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url raise Exception(s) from e def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True): """YOLOv5-small model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5s', pretrained, channels, classes, autoshape) def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True): """YOLOv5-medium model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5m', pretrained, channels, classes, autoshape) def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True): """YOLOv5-large model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5l', pretrained, channels, classes, autoshape) def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True): """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5x', pretrained, channels, classes, autoshape) def custom(path_or_model='path/to/model.pt', autoshape=True): """YOLOv5-custom model from https://github.com/ultralytics/yolov5 Arguments (3 options): path_or_model (str): 'path/to/model.pt' path_or_model (dict): torch.load('path/to/model.pt') path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] Returns: pytorch model """ model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint if isinstance(model, dict): model = model['ema' if model.get('ema') else 'model'] # load model hub_model = Model(model.yaml).to(next(model.parameters()).device) # create hub_model.load_state_dict(model.float().state_dict()) # load state_dict hub_model.names = model.names # class names return hub_model.autoshape() if autoshape else hub_model if __name__ == '__main__': model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example # model = custom(path_or_model='path/to/model.pt') # custom example # Verify inference import numpy as np from PIL import Image imgs = [Image.open('data/images/bus.jpg'), # PIL 'data/images/zidane.jpg', # filename 'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI np.zeros((640, 480, 3))] # numpy results = model(imgs) # batched inference results.print() results.save()