# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats TensorFlow exports authored by https://github.com/zldrobit Usage: $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs Inference: $ python path/to/detect.py --weights yolov5s.pt yolov5s.onnx (must export with --dynamic) yolov5s_saved_model yolov5s.pb yolov5s.tflite TensorFlow.js: $ # Edit yolov5s_web_model/model.json to sort Identity* in ascending order $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example $ npm install $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model $ npm start """ import argparse import subprocess import sys import time from pathlib import Path import torch import torch.nn as nn from torch.utils.mobile_optimizer import optimize_for_mobile FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # yolov5/ dir if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH from models.common import Conv from models.experimental import attempt_load from models.yolo import Detect from utils.activations import SiLU from utils.datasets import LoadImages from utils.general import colorstr, check_dataset, check_img_size, check_requirements, file_size, set_logging, url2file from utils.torch_utils import select_device def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): # YOLOv5 TorchScript model export try: print(f'\n{prefix} starting export with torch {torch.__version__}...') f = file.with_suffix('.torchscript.pt') ts = torch.jit.trace(model, im, strict=False) (optimize_for_mobile(ts) if optimize else ts).save(f) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'{prefix} export failure: {e}') def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')): # YOLOv5 ONNX export try: check_requirements(('onnx',)) import onnx print(f'\n{prefix} starting export with onnx {onnx.__version__}...') f = file.with_suffix('.onnx') torch.onnx.export(model, im, f, verbose=False, opset_version=opset, training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, do_constant_folding=not train, input_names=['images'], output_names=['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) } if dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # print(onnx.helper.printable_graph(model_onnx.graph)) # print # Simplify if simplify: try: check_requirements(('onnx-simplifier',)) import onnxsim print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') model_onnx, check = onnxsim.simplify( model_onnx, dynamic_input_shape=dynamic, input_shapes={'images': list(im.shape)} if dynamic else None) assert check, 'assert check failed' onnx.save(model_onnx, f) except Exception as e: print(f'{prefix} simplifier failure: {e}') print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') print(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'") except Exception as e: print(f'{prefix} export failure: {e}') def export_coreml(model, im, file, prefix=colorstr('CoreML:')): # YOLOv5 CoreML export ct_model = None try: check_requirements(('coremltools',)) import coremltools as ct print(f'\n{prefix} starting export with coremltools {ct.__version__}...') f = file.with_suffix('.mlmodel') model.train() # CoreML exports should be placed in model.train() mode ts = torch.jit.trace(model, im, strict=False) # TorchScript model ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])]) ct_model.save(f) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'\n{prefix} export failure: {e}') return ct_model def export_saved_model(model, im, file, dynamic, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')): # YOLOv5 TensorFlow saved_model export keras_model = None try: import tensorflow as tf from tensorflow import keras from models.tf import TFModel, TFDetect print(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = str(file).replace('.pt', '_saved_model') batch_size, ch, *imgsz = list(im.shape) # BCHW tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) keras_model = keras.Model(inputs=inputs, outputs=outputs) keras_model.summary() keras_model.save(f, save_format='tf') print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'\n{prefix} export failure: {e}') return keras_model def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')): # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow try: import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 print(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = file.with_suffix('.pb') m = tf.function(lambda x: keras_model(x)) # full model m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) frozen_func = convert_variables_to_constants_v2(m) frozen_func.graph.as_graph_def() tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'\n{prefix} export failure: {e}') def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')): # YOLOv5 TensorFlow Lite export try: import tensorflow as tf from models.tf import representative_dataset_gen print(f'\n{prefix} starting export with tensorflow {tf.__version__}...') batch_size, ch, *imgsz = list(im.shape) # BCHW f = file.with_suffix('.tflite') converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] converter.optimizations = [tf.lite.Optimize.DEFAULT] if int8: dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.uint8 # or tf.int8 converter.inference_output_type = tf.uint8 # or tf.int8 converter.experimental_new_quantizer = False f = str(file).replace('.pt', '-int8.tflite') tflite_model = converter.convert() open(f, "wb").write(tflite_model) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'\n{prefix} export failure: {e}') def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): # YOLOv5 TensorFlow.js export try: check_requirements(('tensorflowjs',)) import tensorflowjs as tfjs print(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') f = str(file).replace('.pt', '_web_model') # js dir f_pb = file.with_suffix('.pb') # *.pb path cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \ f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}" subprocess.run(cmd, shell=True) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'\n{prefix} export failure: {e}') @torch.no_grad() def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' weights=ROOT / 'yolov5s.pt', # weights path imgsz=(640, 640), # image (height, width) batch_size=1, # batch size device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu include=('torchscript', 'onnx', 'coreml'), # include formats half=False, # FP16 half-precision export inplace=False, # set YOLOv5 Detect() inplace=True train=False, # model.train() mode optimize=False, # TorchScript: optimize for mobile int8=False, # CoreML/TF INT8 quantization dynamic=False, # ONNX/TF: dynamic axes simplify=False, # ONNX: simplify model opset=12, # ONNX: opset version ): t = time.time() include = [x.lower() for x in include] tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports imgsz *= 2 if len(imgsz) == 1 else 1 # expand file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # Load PyTorch model device = select_device(device) assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0' model = attempt_load(weights, map_location=device, inplace=True, fuse=not any(tf_exports)) # load FP32 model nc, names = model.nc, model.names # number of classes, class names # Input gs = int(max(model.stride)) # grid size (max stride) imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection # Update model if half: im, model = im.half(), model.half() # to FP16 model.train() if train else model.eval() # training mode = no Detect() layer grid construction for k, m in model.named_modules(): if isinstance(m, Conv): # assign export-friendly activations if isinstance(m.act, nn.SiLU): m.act = SiLU() elif isinstance(m, Detect): m.inplace = inplace m.onnx_dynamic = dynamic # m.forward = m.forward_export # assign forward (optional) for _ in range(2): y = model(im) # dry runs print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)") # Exports if 'torchscript' in include: export_torchscript(model, im, file, optimize) if 'onnx' in include: export_onnx(model, im, file, opset, train, dynamic, simplify) if 'coreml' in include: export_coreml(model, im, file) # TensorFlow Exports if any(tf_exports): pb, tflite, tfjs = tf_exports[1:] assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs) # keras model if pb or tfjs: # pb prerequisite to tfjs export_pb(model, im, file) if tflite: export_tflite(model, im, file, int8=int8, data=data, ncalib=100) if tfjs: export_tfjs(model, im, file) # Finish print(f'\nExport complete ({time.time() - t:.2f}s)' f"\nResults saved to {colorstr('bold', file.parent.resolve())}" f'\nVisualize with https://netron.app') def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='FP16 half-precision export') parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') parser.add_argument('--train', action='store_true', help='model.train() mode') parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes') parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version') parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx'], help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)') opt = parser.parse_args() return opt def main(opt): set_logging() print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)