# Parameters nc: 80 # number of classes depth_multiple: 0.67 # model depth multiple width_multiple: 0.75 # layer channel multiple anchors: - [ 19,27, 44,40, 38,94 ] # P3/8 - [ 96,68, 86,152, 180,137 ] # P4/16 - [ 140,301, 303,264, 238,542 ] # P5/32 - [ 436,615, 739,380, 925,792 ] # P6/64 # YOLOv5 backbone backbone: # [from, number, module, args] [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 [ -1, 3, C3, [ 128 ] ], [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 [ -1, 9, C3, [ 256 ] ], [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 [ -1, 9, C3, [ 512 ] ], [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 [ -1, 3, C3, [ 768 ] ], [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], [ -1, 3, C3, [ 1024, False ] ], # 11 ] # YOLOv5 head head: [ [ -1, 1, Conv, [ 768, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 [ -1, 3, C3, [ 768, False ] ], # 15 [ -1, 1, Conv, [ 512, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 [ -1, 3, C3, [ 512, False ] ], # 19 [ -1, 1, Conv, [ 256, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) [ -1, 1, Conv, [ 256, 3, 2 ] ], [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) [ -1, 1, Conv, [ 512, 3, 2 ] ], [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) [ -1, 1, Conv, [ 768, 3, 2 ] ], [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) ]