import argparse import torch.distributed as dist import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data from torch.utils.tensorboard import SummaryWriter import test # import test.py to get mAP after each epoch from models.yolo import Model from utils import google_utils from utils.datasets import * from utils.utils import * mixed_precision = True try: # Mixed precision training https://github.com/NVIDIA/apex from apex import amp except: print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex') mixed_precision = False # not installed wdir = 'weights' + os.sep # weights dir os.makedirs(wdir, exist_ok=True) last = wdir + 'last.pt' best = wdir + 'best.pt' results_file = 'results.txt' # Hyperparameters hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3) 'momentum': 0.937, # SGD momentum 'weight_decay': 5e-4, # optimizer weight decay 'giou': 0.05, # giou loss gain 'cls': 0.58, # cls loss gain 'cls_pw': 1.0, # cls BCELoss positive_weight 'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320) 'obj_pw': 1.0, # obj BCELoss positive_weight 'iou_t': 0.20, # iou training threshold 'anchor_t': 4.0, # anchor-multiple threshold 'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5) 'hsv_h': 0.014, # image HSV-Hue augmentation (fraction) 'hsv_s': 0.68, # image HSV-Saturation augmentation (fraction) 'hsv_v': 0.36, # image HSV-Value augmentation (fraction) 'degrees': 0.0, # image rotation (+/- deg) 'translate': 0.0, # image translation (+/- fraction) 'scale': 0.5, # image scale (+/- gain) 'shear': 0.0} # image shear (+/- deg) print(hyp) # Overwrite hyp with hyp*.txt (optional) f = glob.glob('hyp*.txt') if f: print('Using %s' % f[0]) for k, v in zip(hyp.keys(), np.loadtxt(f[0])): hyp[k] = v # Print focal loss if gamma > 0 if hyp['fl_gamma']: print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma']) def train(hyp): epochs = opt.epochs # 300 batch_size = opt.batch_size # 64 weights = opt.weights # initial training weights # Configure init_seeds(1) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict train_path = data_dict['train'] test_path = data_dict['val'] nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes # Remove previous results for f in glob.glob('*_batch*.jpg') + glob.glob(results_file): os.remove(f) # Create model model = Model(opt.cfg, nc=data_dict['nc']).to(device) # Image sizes gs = int(max(model.stride)) # grid size (max stride) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_parameters(): if v.requires_grad: if '.bias' in k: pg2.append(v) # biases elif '.weight' in k and '.bn' not in k: pg1.append(v) # apply weight decay else: pg0.append(v) # all else optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \ optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) # Scheduler https://arxiv.org/pdf/1812.01187.pdf lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Load Model google_utils.attempt_download(weights) start_epoch, best_fitness = 0, 0.0 if weights.endswith('.pt'): # pytorch format ckpt = torch.load(weights, map_location=device) # load checkpoint # load model try: ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items() if model.state_dict()[k].shape == v.shape} # to FP32, filter model.load_state_dict(ckpt['model'], strict=False) except KeyError as e: s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \ "Please delete or update %s and try again, or use --weights '' to train from scratch." \ % (opt.weights, opt.cfg, opt.weights, opt.weights) raise KeyError(s) from e # load optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # load results if ckpt.get('training_results') is not None: with open(results_file, 'w') as file: file.write(ckpt['training_results']) # write results.txt # epochs start_epoch = ckpt['epoch'] + 1 if epochs < start_epoch: print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (opt.weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt # Mixed precision training https://github.com/NVIDIA/apex if mixed_precision: model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0) scheduler.last_epoch = start_epoch - 1 # do not move # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822 # plot_lr_scheduler(optimizer, scheduler, epochs) # Initialize distributed training if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available(): dist.init_process_group(backend='nccl', # distributed backend init_method='tcp://127.0.0.1:9999', # init method world_size=1, # number of nodes rank=0) # node rank model = torch.nn.parallel.DistributedDataParallel(model) # pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg) # Testloader testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt, hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0] # Model parameters hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights model.names = data_dict['names'] # Class frequency labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # model._initialize_biases(cf.to(device)) if tb_writer: plot_labels(labels) tb_writer.add_histogram('classes', c, 0) # Check anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # Exponential moving average ema = torch_utils.ModelEMA(model) # Start training t0 = time.time() nb = len(dataloader) # number of batches n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations) maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' print('Image sizes %g train, %g test' % (imgsz, imgsz_test)) print('Using %g dataloader workers' % dataloader.num_workers) print('Starting training for %g epochs...' % epochs) # torch.autograd.set_detect_anomaly(True) for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if dataset.image_weights: w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w) dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) pbar = tqdm(enumerate(dataloader), total=nb) # progress bar for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0 # Burn-in if ni <= n_burn: xi = [0, n_burn] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward pred = model(imgs) # Loss loss, loss_items = compute_loss(pred, targets.to(device), model) if not torch.isfinite(loss): print('WARNING: non-finite loss, ending training ', loss_items) return results # Backward if mixed_precision: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # Optimize if ni % accumulate == 0: optimizer.step() optimizer.zero_grad() ema.update(model) # Print mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if ni < 3: f = 'train_batch%g.jpg' % ni # filename result = plot_images(images=imgs, targets=targets, paths=paths, fname=f) if tb_writer and result is not None: tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(model, imgs) # add model to tensorboard # end batch ------------------------------------------------------------------------------------------------ # Scheduler scheduler.step() # mAP ema.update_attr(model) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP results, maps, times = test.test(opt.data, batch_size=batch_size, imgsz=imgsz_test, save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'), model=ema.ema, single_cls=opt.single_cls, dataloader=testloader) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) if len(opt.name) and opt.bucket: os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name)) # Tensorboard if tb_writer: tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss'] for x, tag in zip(list(mloss[:-1]) + list(results), tags): tb_writer.add_scalar(tag, x, epoch) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1] if fi > best_fitness: best_fitness = fi # Save model save = (not opt.nosave) or (final_epoch and not opt.evolve) if save: with open(results_file, 'r') as f: # create checkpoint ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': f.read(), 'model': ema.ema, 'optimizer': None if final_epoch else optimizer.state_dict()} # Save last, best and delete torch.save(ckpt, last) if (best_fitness == fi) and not final_epoch: torch.save(ckpt, best) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training # Strip optimizers n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]): if os.path.exists(f1): os.rename(f1, f2) # rename ispt = f2.endswith('.pt') # is *.pt strip_optimizer(f2) if ispt else None # strip optimizer os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload # Finish if not opt.evolve: plot_results() # save as results.png print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None torch.cuda.empty_cache() return results if __name__ == '__main__': check_git_status() parser = argparse.ArgumentParser() parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16) parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path') parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', action='store_true', help='resume training from last.pt') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--weights', type=str, default='', help='initial weights path') parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--adam', action='store_true', help='use adam optimizer') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') opt = parser.parse_args() opt.weights = last if opt.resume and not opt.weights else opt.weights opt.cfg = check_file(opt.cfg) # check file opt.data = check_file(opt.data) # check file print(opt) opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size) if device.type == 'cpu': mixed_precision = False # Train if not opt.evolve: tb_writer = SummaryWriter(comment=opt.name) print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/') train(hyp) # Evolve hyperparameters (optional) else: tb_writer = None opt.notest, opt.nosave = True, True # only test/save final epoch if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(10): # generations to evolve if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() # weights if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.9, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains ng = len(g) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = x[i + 7] * v[i] # mutate # Clip to limits keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma'] limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)] for k, v in zip(keys, limits): hyp[k] = np.clip(hyp[k], v[0], v[1]) # Train mutation results = train(hyp.copy()) # Write mutation results print_mutation(hyp, results, opt.bucket) # Plot results # plot_evolution_results(hyp)