CI CPU testing YOLOv5 Citation
Open In Colab Open In Kaggle Docker Pulls


YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

##
Documentation
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. ##
Quick Start Examples
Install [**Python>=3.6.0**](https://www.python.org/) is required with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/): ```bash $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ pip install -r requirements.txt ```
Inference Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). ```python import torch # Model model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5x, custom # Images img = 'https://ultralytics.com/images/zidane.jpg' # or file, PIL, OpenCV, numpy, multiple # Inference results = model(img) # Results results.print() # or .show(), .save(), .crop(), .pandas(), etc. ```
Inference with detect.py `detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. ```bash $ python detect.py --source 0 # webcam file.jpg # image file.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/NUsoVlDFqZg' # YouTube video 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream ```
Training Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). ```bash $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 yolov5m 40 yolov5l 24 yolov5x 16 ```
Tutorials * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED * [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️ RECOMMENDED * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)  🌟 NEW * [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)  🌟 NEW * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ NEW * [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀 * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)  ⭐ NEW * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
##
Environments and Integrations
Get started in seconds with our verified environments and integrations, including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment logging. Click each icon below for details.
##
Compete and Win
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!

##
Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand) * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. * **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
### Pretrained Checkpoints [assets]: https://github.com/ultralytics/yolov5/releases |Model |size
(pixels) |mAPval
0.5:0.95 |mAPtest
0.5:0.95 |mAPval
0.5 |Speed
V100 (ms) | |params
(M) |FLOPs
640 (B) |--- |--- |--- |--- |--- |--- |---|--- |--- |[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0 |[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3 |[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4 |[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8 | | | | | | | | | |[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4 |[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4 |[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7 |[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9 | | | | | | | | | |[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
Table Notes (click to expand) * APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` * SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
##
Contribute
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started. ##
Contact
For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).