# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Common modules """ import json import math import platform import warnings from collections import OrderedDict, namedtuple from copy import copy from pathlib import Path import cv2 import numpy as np import pandas as pd import requests import torch import torch.nn as nn import yaml from PIL import Image from torch.cuda import amp from utils.datasets import exif_transpose, letterbox from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path, make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh) from utils.plots import Annotator, colors, save_one_box from utils.torch_utils import copy_attr, time_sync def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x)) class DWConv(Conv): # Depth-wise convolution class def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act) class TransformerLayer(nn.Module): # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) def __init__(self, c, num_heads): super().__init__() self.q = nn.Linear(c, c, bias=False) self.k = nn.Linear(c, c, bias=False) self.v = nn.Linear(c, c, bias=False) self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) self.fc1 = nn.Linear(c, c, bias=False) self.fc2 = nn.Linear(c, c, bias=False) def forward(self, x): x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x x = self.fc2(self.fc1(x)) + x return x class TransformerBlock(nn.Module): # Vision Transformer https://arxiv.org/abs/2010.11929 def __init__(self, c1, c2, num_heads, num_layers): super().__init__() self.conv = None if c1 != c2: self.conv = Conv(c1, c2) self.linear = nn.Linear(c2, c2) # learnable position embedding self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) self.c2 = c2 def forward(self, x): if self.conv is not None: x = self.conv(x) b, _, w, h = x.shape p = x.flatten(2).permute(2, 0, 1) return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckCSP(nn.Module): # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(2 * c_, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.SiLU() self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) def forward(self, x): y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) class C3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) class C3TR(C3): # C3 module with TransformerBlock() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) self.m = TransformerBlock(c_, c_, 4, n) class C3SPP(C3): # C3 module with SPP() def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) self.m = SPP(c_, c_, k) class C3Ghost(C3): # C3 module with GhostBottleneck() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) class SPP(nn.Module): # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 def __init__(self, c1, c2, k=(5, 9, 13)): super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1)) class Focus(nn.Module): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) # self.contract = Contract(gain=2) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) # return self.conv(self.contract(x)) class GhostConv(nn.Module): # Ghost Convolution https://github.com/huawei-noah/ghostnet def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups super().__init__() c_ = c2 // 2 # hidden channels self.cv1 = Conv(c1, c_, k, s, None, g, act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) def forward(self, x): y = self.cv1(x) return torch.cat([y, self.cv2(y)], 1) class GhostBottleneck(nn.Module): # Ghost Bottleneck https://github.com/huawei-noah/ghostnet def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride super().__init__() c_ = c2 // 2 self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw GhostConv(c_, c2, 1, 1, act=False)) # pw-linear self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() def forward(self, x): return self.conv(x) + self.shortcut(x) class Contract(nn.Module): # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) def __init__(self, gain=2): super().__init__() self.gain = gain def forward(self, x): b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain' s = self.gain x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2) x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40) class Expand(nn.Module): # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) def __init__(self, gain=2): super().__init__() self.gain = gain def forward(self, x): b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' s = self.gain x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80) x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super().__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class DetectMultiBackend(nn.Module): # YOLOv5 MultiBackend class for python inference on various backends def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None): # Usage: # PyTorch: weights = *.pt # TorchScript: *.torchscript # CoreML: *.mlmodel # OpenVINO: *.xml # TensorFlow: *_saved_model # TensorFlow: *.pb # TensorFlow Lite: *.tflite # TensorFlow Edge TPU: *_edgetpu.tflite # ONNX Runtime: *.onnx # OpenCV DNN: *.onnx with dnn=True # TensorRT: *.engine from models.experimental import attempt_download, attempt_load # scoped to avoid circular import super().__init__() w = str(weights[0] if isinstance(weights, list) else weights) suffix = Path(w).suffix.lower() suffixes = ['.pt', '.torchscript', '.onnx', '.engine', '.tflite', '.pb', '', '.mlmodel', '.xml'] check_suffix(w, suffixes) # check weights have acceptable suffix pt, jit, onnx, engine, tflite, pb, saved_model, coreml, xml = (suffix == x for x in suffixes) # backends stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults w = attempt_download(w) # download if not local if data: # data.yaml path (optional) with open(data, errors='ignore') as f: names = yaml.safe_load(f)['names'] # class names if pt: # PyTorch model = attempt_load(weights if isinstance(weights, list) else w, map_location=device) stride = int(model.stride.max()) # model stride names = model.module.names if hasattr(model, 'module') else model.names # get class names self.model = model # explicitly assign for to(), cpu(), cuda(), half() elif jit: # TorchScript LOGGER.info(f'Loading {w} for TorchScript inference...') extra_files = {'config.txt': ''} # model metadata model = torch.jit.load(w, _extra_files=extra_files) if extra_files['config.txt']: d = json.loads(extra_files['config.txt']) # extra_files dict stride, names = int(d['stride']), d['names'] elif coreml: # CoreML LOGGER.info(f'Loading {w} for CoreML inference...') import coremltools as ct model = ct.models.MLModel(w) elif xml: # OpenVINO LOGGER.info(f'Loading {w} for OpenVINO inference...') check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ import openvino.inference_engine as ie core = ie.IECore() network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths executable_network = core.load_network(network, device_name='CPU', num_requests=1) elif dnn: # ONNX OpenCV DNN LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') check_requirements(('opencv-python>=4.5.4',)) net = cv2.dnn.readNetFromONNX(w) elif onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') cuda = torch.cuda.is_available() check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) import onnxruntime providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(w, providers=providers) elif engine: # TensorRT LOGGER.info(f'Loading {w} for TensorRT inference...') import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download check_version(trt.__version__, '8.0.0', verbose=True) # version requirement Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) logger = trt.Logger(trt.Logger.INFO) with open(w, 'rb') as f, trt.Runtime(logger) as runtime: model = runtime.deserialize_cuda_engine(f.read()) bindings = OrderedDict() for index in range(model.num_bindings): name = model.get_binding_name(index) dtype = trt.nptype(model.get_binding_dtype(index)) shape = tuple(model.get_binding_shape(index)) data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device) bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr())) binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) context = model.create_execution_context() batch_size = bindings['images'].shape[0] else: # TensorFlow (TFLite, pb, saved_model) if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...') import tensorflow as tf def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: LOGGER.info(f'Loading {w} for TensorFlow saved_model inference...') import tensorflow as tf model = tf.keras.models.load_model(w) elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python if 'edgetpu' in w.lower(): LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') import tflite_runtime.interpreter as tfli delegate = {'Linux': 'libedgetpu.so.1', # install https://coral.ai/software/#edgetpu-runtime 'Darwin': 'libedgetpu.1.dylib', 'Windows': 'edgetpu.dll'}[platform.system()] interpreter = tfli.Interpreter(model_path=w, experimental_delegates=[tfli.load_delegate(delegate)]) else: LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') import tensorflow as tf interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs self.__dict__.update(locals()) # assign all variables to self def forward(self, im, augment=False, visualize=False, val=False): # YOLOv5 MultiBackend inference b, ch, h, w = im.shape # batch, channel, height, width if self.pt or self.jit: # PyTorch y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize) return y if val else y[0] elif self.coreml: # CoreML im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3) im = Image.fromarray((im[0] * 255).astype('uint8')) # im = im.resize((192, 320), Image.ANTIALIAS) y = self.model.predict({'image': im}) # coordinates are xywh normalized box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) elif self.onnx: # ONNX im = im.cpu().numpy() # torch to numpy if self.dnn: # ONNX OpenCV DNN self.net.setInput(im) y = self.net.forward() else: # ONNX Runtime y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0] elif self.xml: # OpenVINO im = im.cpu().numpy() # FP32 desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description request = self.executable_network.requests[0] # inference request request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs)) request.infer() y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs)) elif self.engine: # TensorRT assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape) self.binding_addrs['images'] = int(im.data_ptr()) self.context.execute_v2(list(self.binding_addrs.values())) y = self.bindings['output'].data else: # TensorFlow model (TFLite, pb, saved_model) im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3) if self.pb: y = self.frozen_func(x=self.tf.constant(im)).numpy() elif self.saved_model: y = self.model(im, training=False).numpy() elif self.tflite: input, output = self.input_details[0], self.output_details[0] int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model if int8: scale, zero_point = input['quantization'] im = (im / scale + zero_point).astype(np.uint8) # de-scale self.interpreter.set_tensor(input['index'], im) self.interpreter.invoke() y = self.interpreter.get_tensor(output['index']) if int8: scale, zero_point = output['quantization'] y = (y.astype(np.float32) - zero_point) * scale # re-scale y[..., 0] *= w # x y[..., 1] *= h # y y[..., 2] *= w # w y[..., 3] *= h # h y = torch.tensor(y) if isinstance(y, np.ndarray) else y return (y, []) if val else y def warmup(self, imgsz=(1, 3, 640, 640), half=False): # Warmup model by running inference once if self.pt or self.engine or self.onnx: # warmup types if isinstance(self.device, torch.device) and self.device.type != 'cpu': # only warmup GPU models im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image self.forward(im) # warmup class AutoShape(nn.Module): # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS conf = 0.25 # NMS confidence threshold iou = 0.45 # NMS IoU threshold agnostic = False # NMS class-agnostic multi_label = False # NMS multiple labels per box classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs max_det = 1000 # maximum number of detections per image amp = False # Automatic Mixed Precision (AMP) inference def __init__(self, model): super().__init__() LOGGER.info('Adding AutoShape... ') copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance self.pt = not self.dmb or model.pt # PyTorch model self.model = model.eval() def _apply(self, fn): # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers self = super()._apply(fn) if self.pt: m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() m.stride = fn(m.stride) m.grid = list(map(fn, m.grid)) if isinstance(m.anchor_grid, list): m.anchor_grid = list(map(fn, m.anchor_grid)) return self @torch.no_grad() def forward(self, imgs, size=640, augment=False, profile=False): # Inference from various sources. For height=640, width=1280, RGB images example inputs are: # file: imgs = 'data/images/zidane.jpg' # str or PosixPath # URI: = 'https://ultralytics.com/images/zidane.jpg' # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3) # numpy: = np.zeros((640,1280,3)) # HWC # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images t = [time_sync()] p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference if isinstance(imgs, torch.Tensor): # torch with amp.autocast(enabled=autocast): return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference # Pre-process n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images shape0, shape1, files = [], [], [] # image and inference shapes, filenames for i, im in enumerate(imgs): f = f'image{i}' # filename if isinstance(im, (str, Path)): # filename or uri im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im im = np.asarray(exif_transpose(im)) elif isinstance(im, Image.Image): # PIL Image im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f files.append(Path(f).with_suffix('.jpg').name) if im.shape[0] < 5: # image in CHW im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input s = im.shape[:2] # HWC shape0.append(s) # image shape g = (size / max(s)) # gain shape1.append([y * g for y in s]) imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)] # inference shape x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs] # pad x = np.stack(x, 0) if n > 1 else x[0][None] # stack x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 t.append(time_sync()) with amp.autocast(enabled=autocast): # Inference y = self.model(x, augment, profile) # forward t.append(time_sync()) # Post-process y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes, agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det) # NMS for i in range(n): scale_coords(shape1, y[i][:, :4], shape0[i]) t.append(time_sync()) return Detections(imgs, y, files, t, self.names, x.shape) class Detections: # YOLOv5 detections class for inference results def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None): super().__init__() d = pred[0].device # device gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations self.imgs = imgs # list of images as numpy arrays self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) self.names = names # class names self.files = files # image filenames self.times = times # profiling times self.xyxy = pred # xyxy pixels self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized self.n = len(self.pred) # number of images (batch size) self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) self.s = shape # inference BCHW shape def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): crops = [] for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string if pred.shape[0]: for c in pred[:, -1].unique(): n = (pred[:, -1] == c).sum() # detections per class s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string if show or save or render or crop: annotator = Annotator(im, example=str(self.names)) for *box, conf, cls in reversed(pred): # xyxy, confidence, class label = f'{self.names[int(cls)]} {conf:.2f}' if crop: file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label, 'im': save_one_box(box, im, file=file, save=save)}) else: # all others annotator.box_label(box, label, color=colors(cls)) im = annotator.im else: s += '(no detections)' im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np if pprint: LOGGER.info(s.rstrip(', ')) if show: im.show(self.files[i]) # show if save: f = self.files[i] im.save(save_dir / f) # save if i == self.n - 1: LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") if render: self.imgs[i] = np.asarray(im) if crop: if save: LOGGER.info(f'Saved results to {save_dir}\n') return crops def print(self): self.display(pprint=True) # print results LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) def show(self): self.display(show=True) # show results def save(self, save_dir='runs/detect/exp'): save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir self.display(save=True, save_dir=save_dir) # save results def crop(self, save=True, save_dir='runs/detect/exp'): save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None return self.display(crop=True, save=save, save_dir=save_dir) # crop results def render(self): self.display(render=True) # render results return self.imgs def pandas(self): # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) new = copy(self) # return copy ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) return new def tolist(self): # return a list of Detections objects, i.e. 'for result in results.tolist():' r = range(self.n) # iterable x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] # for d in x: # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: # setattr(d, k, getattr(d, k)[0]) # pop out of list return x def __len__(self): return self.n class Classify(nn.Module): # Classification head, i.e. x(b,c1,20,20) to x(b,c2) def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) self.flat = nn.Flatten() def forward(self, x): z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list return self.flat(self.conv(z)) # flatten to x(b,c2)