"""Exports a pytorch *.pt model to *.onnx format Usage: $ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 """ import argparse import onnx from models.common import * from utils import google_utils if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') parser.add_argument('--batch-size', type=int, default=1, help='batch size') opt = parser.parse_args() opt.img_size *= 2 if len(opt.img_size) == 1 else 1 print(opt) # Parameters f = opt.weights.replace('.pt', '.onnx') # onnx filename img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection # Load pytorch model google_utils.attempt_download(opt.weights) model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() model.eval() model.fuse() # Export to onnx model.model[-1].export = True # set Detect() layer export=True _ = model(img) # dry run torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'], output_names=['output']) # output_names=['classes', 'boxes'] # Check onnx model model = onnx.load(f) # load onnx model onnx.checker.check_model(model) # check onnx model print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)