# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset # Train command: python train.py --data visdrone.yaml # Default dataset location is next to YOLOv5: # /parent_folder # /VisDrone # /yolov5 # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/] train: ../VisDrone/VisDrone2019-DET-train/images # 6471 images val: ../VisDrone/VisDrone2019-DET-val/images # 548 images test: ../VisDrone/VisDrone2019-DET-test-dev/images # 1610 images # number of classes nc: 10 # class names names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ] # download command/URL (optional) -------------------------------------------------------------------------------------- download: | import os from pathlib import Path from utils.general import download def visdrone2yolo(dir): from PIL import Image from tqdm import tqdm def convert_box(size, box): # Convert VisDrone box to YOLO xywh box dw = 1. / size[0] dh = 1. / size[1] return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') for f in pbar: img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size lines = [] with open(f, 'r') as file: # read annotation.txt for row in [x.split(',') for x in file.read().strip().splitlines()]: if row[4] == '0': # VisDrone 'ignored regions' class 0 continue cls = int(row[5]) - 1 box = convert_box(img_size, tuple(map(int, row[:4]))) lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: fl.writelines(lines) # write label.txt # Download dir = Path('../VisDrone') # dataset directory urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] download(urls, dir=dir) # Convert for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels