# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch FROM nvcr.io/nvidia/pytorch:20.12-py3 # Install linux packages RUN apt update && apt install -y screen libgl1-mesa-glx # Install python dependencies RUN python -m pip install --upgrade pip COPY requirements.txt . RUN pip install -r requirements.txt gsutil # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents COPY . /usr/src/app # Copy weights #RUN python3 -c "from models import *; \ #attempt_download('weights/yolov5s.pt'); \ #attempt_download('weights/yolov5m.pt'); \ #attempt_download('weights/yolov5l.pt')" # --------------------------------------------------- Extras Below --------------------------------------------------- # Build and Push # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t # for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done # Pull and Run # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t # Pull and Run with local directory access # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t # Kill all # sudo docker kill $(sudo docker ps -q) # Kill all image-based # sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest) # Bash into running container # sudo docker exec -it 5a9b5863d93d bash # Bash into stopped container # id=5a9b5863d93d && sudo docker start $id && sudo docker exec -it $id bash # Send weights to GCP # python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt # Clean up # docker system prune -a --volumes