MimicBrush / data_utils.py
xichenhku's picture
Upload 162 files
81d8e7c verified
import numpy as np
import torch
import cv2
import random
from PIL import Image
def gaussian_blure(img, intens = 5):
"""
高斯模糊
:param image_path:
:intens 5,10,15,20
:return:
"""
img = np.array(img).astype(np.uint8)
result = cv2.GaussianBlur(img, (0, 0), intens)
result = Image.fromarray(result)
return result
def random_mask(mask):
h,w = mask.shape[0], mask.shape[1]
mask_black = np.zeros_like(mask)
box_w = random.uniform(0.4, 0.9) * w
box_h = random.uniform(0.4, 0.9) * h
box_w = int(box_w)
box_h = int(box_h)
y1 = random.randint(0, h - box_h)
y2 = y1 + box_h
x1 = random.randint(0, w - box_w)
x2 = x1 + box_w
mask_black[y1:y2,x1:x2] = 1
mask_black = mask_black.astype(np.uint8)
return mask_black
'''
def random_mask_grid(mask, p=0.50):
# 创建一个 h x w 的全零数组,作为初始掩膜
h,w = mask.shape[0],mask.shape[1]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 在每个小块中以概率 p 设置为 1
for i in range(n):
for j in range(n):
if np.random.rand() < p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
'''
def get_SIFT(image):
orb = cv2.ORB_create(nfeatures=200, edgeThreshold=50)
keypoint, descriptor = orb.detectAndCompute(image, None)
coordinates = [(int(kp.pt[1]), int(kp.pt[0])) for kp in keypoint]
return coordinates
'''
def random_mask_grid(mask, points_list, p=0.0):
# 创建一个 h x w 的全零数组,作为初始掩膜
h, w = mask.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 统计每个小块内的点个数
block_counts = np.zeros((n, n), dtype=np.int32)
for point in points_list:
y, x = point
i = min(y // block_h, n-1)
j = min(x // block_w, n-1)
block_counts[i, j] += 1
# 找出包含点最多的前5个小块
top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
# 将这些小块对应的像素设为1
for idx in top5_blocks:
i, j = divmod(idx, n)
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
# 在其他小块中按照概率p设置为1
for i in range(n):
for j in range(n):
if (i*n + j) not in top5_blocks and np.random.rand() < p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
'''
def random_mask_grid(mask, points_list, p=0.50, top5_p=0.70, other_p=0.30):
# 创建一个 h x w 的全零数组,作为初始掩膜
h, w = mask.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 统计每个小块内的点个数
block_counts = np.zeros((n, n), dtype=np.int32)
for point in points_list:
y, x = point
i = min(y // block_h, n-1)
j = min(x // block_w, n-1)
block_counts[i, j] += 1
# 找出包含点最多的前5个小块
top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
# 将这些小块对应的像素设为1
for idx in top5_blocks:
i, j = divmod(idx, n)
if np.random.rand() < top5_p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
# 在其他小块中按照概率p设置为1
for i in range(n):
for j in range(n):
if (i*n + j) not in top5_blocks and np.random.rand() < other_p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
def random_perspective_transform(image, intensity):
"""
对图像进行随机透视变换
参数:
image: 要进行变换的输入图像
intensity: 变换的强度,范围从0到1,值越大,变换越明显
返回值:
变换后的图像
"""
height, width = image.shape[:2]
# 生成随机透视变换的四个目标点
x_offset = width * 0.4 * intensity
y_offset = height * 0.4 * intensity
dst_points = np.float32([[random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
[width - random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
[random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)],
[width - random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)]])
# 对应的源点是图像的四个角
src_points = np.float32([[0, 0], [width, 0], [0, height], [width, height]])
# 生成透视变换矩阵
M = cv2.getPerspectiveTransform(src_points, dst_points)
# 进行透视变换
transformed_image = cv2.warpPerspective(image, M, (width, height))
mask = np.ones_like(transformed_image)
transformed_mask = cv2.warpPerspective(mask, M, (width, height))> 0.5
kernel_size = 5
kernel = np.ones((kernel_size, kernel_size), np.uint8)
transformed_mask = cv2.erode(transformed_mask.astype(np.uint8), kernel, iterations=1).astype(np.uint8)
white_back = np.ones_like(transformed_image) * 255
transformed_image = transformed_image * transformed_mask + white_back * (1-transformed_mask)
return transformed_image
def mask_score(mask):
'''Scoring the mask according to connectivity.'''
mask = mask.astype(np.uint8)
if mask.sum() < 10:
return 0
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
conc_score = np.max(cnt_area) / sum(cnt_area)
return conc_score
def sobel(img, mask, thresh = 50):
'''Calculating the high-frequency map.'''
H,W = img.shape[0], img.shape[1]
img = cv2.resize(img,(256,256))
mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8)
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask, kernel, iterations = 2)
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
sobel_X = cv2.convertScaleAbs(sobelx)
sobel_Y = cv2.convertScaleAbs(sobely)
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1) * mask
scharr[scharr < thresh] = 0.0
scharr = np.stack([scharr,scharr,scharr],-1)
scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8)
scharr = cv2.resize(scharr,(W,H))
return scharr
def resize_and_pad(image, box):
'''Fitting an image to the box region while keeping the aspect ratio.'''
y1,y2,x1,x2 = box
H,W = y2-y1, x2-x1
h,w = image.shape[0], image.shape[1]
r_box = W / H
r_image = w / h
if r_box >= r_image:
h_target = H
w_target = int(w * H / h)
image = cv2.resize(image, (w_target, h_target))
w1 = (W - w_target) // 2
w2 = W - w_target - w1
pad_param = ((0,0),(w1,w2),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
else:
w_target = W
h_target = int(h * W / w)
image = cv2.resize(image, (w_target, h_target))
h1 = (H-h_target) // 2
h2 = H - h_target - h1
pad_param =((h1,h2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
return image
def expand_image_mask(image, mask, ratio=1.4, random = False):
# expand image and mask
# pad image with 255
# pad mask with 0
h,w = image.shape[0], image.shape[1]
H,W = int(h * ratio), int(w * ratio)
if random:
h1 = np.random.randint(0, int(H - h))
w1 = np.random.randint(0, int(W - w))
else:
h1 = int((H - h) // 2)
w1 = int((W -w) // 2)
h2 = H - h - h1
w2 = W -w - w1
pad_param_image = ((h1,h2),(w1,w2),(0,0))
pad_param_mask = ((h1,h2),(w1,w2))
image = np.pad(image, pad_param_image, 'constant', constant_values=255)
mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
return image, mask
def resize_box(yyxx, H,W,h,w):
y1,y2,x1,x2 = yyxx
y1,y2 = int(y1/H * h), int(y2/H * h)
x1,x2 = int(x1/W * w), int(x2/W * w)
y1,y2 = min(y1,h), min(y2,h)
x1,x2 = min(x1,w), min(x2,w)
return (y1,y2,x1,x2)
def get_bbox_from_mask(mask):
h,w = mask.shape[0],mask.shape[1]
if mask.sum() < 10:
return 0,h,0,w
rows = np.any(mask,axis=1)
cols = np.any(mask,axis=0)
y1,y2 = np.where(rows)[0][[0,-1]]
x1,x2 = np.where(cols)[0][[0,-1]]
return (y1,y2,x1,x2)
def expand_bbox(mask,yyxx,ratio=[1.2,2.0], min_crop=0):
y1,y2,x1,x2 = yyxx
ratio = np.random.randint( ratio[0] * 10, ratio[1] * 10 ) / 10
H,W = mask.shape[0], mask.shape[1]
xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
h = ratio * (y2-y1+1)
w = ratio * (x2-x1+1)
h = max(h,min_crop)
w = max(w,min_crop)
x1 = int(xc - w * 0.5)
x2 = int(xc + w * 0.5)
y1 = int(yc - h * 0.5)
y2 = int(yc + h * 0.5)
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def box2squre(image, box):
H,W = image.shape[0], image.shape[1]
y1,y2,x1,x2 = box
cx = (x1 + x2) // 2
cy = (y1 + y2) // 2
h,w = y2-y1, x2-x1
if h >= w:
x1 = cx - h//2
x2 = cx + h//2
else:
y1 = cy - w//2
y2 = cy + w//2
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def pad_to_square(image, pad_value = 255, random = False):
H,W = image.shape[0], image.shape[1]
if H == W:
return image
padd = abs(H - W)
if random:
padd_1 = int(np.random.randint(0,padd))
else:
padd_1 = int(padd / 2)
padd_2 = padd - padd_1
if H > W:
pad_param = ((0,0),(padd_1,padd_2),(0,0))
else:
pad_param = ((padd_1,padd_2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
return image
def box_in_box(small_box, big_box):
y1,y2,x1,x2 = small_box
y1_b, _, x1_b, _ = big_box
y1,y2,x1,x2 = y1 - y1_b ,y2 - y1_b, x1 - x1_b ,x2 - x1_b
return (y1,y2,x1,x2 )
def shuffle_image(image, N):
height, width = image.shape[:2]
block_height = height // N
block_width = width // N
blocks = []
for i in range(N):
for j in range(N):
block = image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width]
blocks.append(block)
np.random.shuffle(blocks)
shuffled_image = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(N):
for j in range(N):
shuffled_image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = blocks[i*N+j]
return shuffled_image
def get_mosaic_mask(image, fg_mask, N=16, ratio = 0.5):
ids = [i for i in range(N * N)]
masked_number = int(N * N * ratio)
masked_id = np.random.choice(ids, masked_number, replace=False)
height, width = image.shape[:2]
mask = np.ones((height, width))
block_height = height // N
block_width = width // N
b_id = 0
for i in range(N):
for j in range(N):
if b_id in masked_id:
mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] * 0
b_id += 1
mask = mask * fg_mask
mask3 = np.stack([mask,mask,mask],-1).copy().astype(np.uint8)
noise = q_x(image)
noise_mask = image * mask3 + noise * (1-mask3)
return noise_mask
def extract_canney_noise(image, mask, dilate=True):
h,w = image.shape[0],image.shape[1]
mask = cv2.resize(mask.astype(np.uint8),(w,h)) > 0.5
kernel = np.ones((8, 8), dtype=np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, 10)
canny = cv2.Canny(image, 50,100) * mask
kernel = np.ones((8, 8), dtype=np.uint8)
mask = (cv2.dilate(canny, kernel, 5) > 128).astype(np.uint8)
mask = np.stack([mask,mask,mask],-1)
pure_noise = q_x(image, t=1) * 0 + 255
canny_noise = mask * image + (1-mask) * pure_noise
return canny_noise
def get_random_structure(size):
choice = np.random.randint(1, 5)
if choice == 1:
return cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
elif choice == 2:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
elif choice == 3:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size//2))
elif choice == 4:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size//2, size))
def random_dilate(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.dilate(seg,kernel,iterations = 1)
return seg
def random_erode(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.erode(seg,kernel,iterations = 1)
return seg
def compute_iou(seg, gt):
intersection = seg*gt
union = seg+gt
return (np.count_nonzero(intersection) + 1e-6) / (np.count_nonzero(union) + 1e-6)
def select_max_region(mask):
nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
background = 0
for row in range(stats.shape[0]):
if stats[row, :][0] == 0 and stats[row, :][1] == 0:
background = row
stats_no_bg = np.delete(stats, background, axis=0)
max_idx = stats_no_bg[:, 4].argmax()
max_region = np.where(labels==max_idx+1, 1, 0)
return max_region.astype(np.uint8)
def perturb_mask(gt, min_iou = 0.3, max_iou = 0.99):
iou_target = np.random.uniform(min_iou, max_iou)
h, w = gt.shape
gt = gt.astype(np.uint8)
seg = gt.copy()
# Rare case
if h <= 2 or w <= 2:
print('GT too small, returning original')
return seg
# Do a bunch of random operations
for _ in range(250):
for _ in range(4):
lx, ly = np.random.randint(w), np.random.randint(h)
lw, lh = np.random.randint(lx+1,w+1), np.random.randint(ly+1,h+1)
# Randomly set one pixel to 1/0. With the following dilate/erode, we can create holes/external regions
if np.random.rand() < 0.1:
cx = int((lx + lw) / 2)
cy = int((ly + lh) / 2)
seg[cy, cx] = np.random.randint(2) * 255
# Dilate/erode
if np.random.rand() < 0.5:
seg[ly:lh, lx:lw] = random_dilate(seg[ly:lh, lx:lw])
else:
seg[ly:lh, lx:lw] = random_erode(seg[ly:lh, lx:lw])
seg = np.logical_or(seg, gt).astype(np.uint8)
#seg = select_max_region(seg)
if compute_iou(seg, gt) < iou_target:
break
seg = select_max_region(seg.astype(np.uint8))
return seg.astype(np.uint8)
def q_x(x_0,t=65):
'''Adding noise for and given image.'''
x_0 = torch.from_numpy(x_0).float() / 127.5 - 1
num_steps = 100
betas = torch.linspace(-6,6,num_steps)
betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5
alphas = 1-betas
alphas_prod = torch.cumprod(alphas,0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)
noise = torch.randn_like(x_0)
alphas_t = alphas_bar_sqrt[t]
alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
return (alphas_t * x_0 + alphas_1_m_t * noise).numpy() * 127.5 + 127.5
def extract_target_boundary(img, target_mask):
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
# sobel-x
sobel_X = cv2.convertScaleAbs(sobelx)
# sobel-y
sobel_Y = cv2.convertScaleAbs(sobely)
# sobel-xy
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1).astype(np.float32)/255
scharr = scharr * target_mask.astype(np.float32)
return scharr