Spaces:
Sleeping
Sleeping
from datetime import datetime, timedelta | |
import numpy as np | |
import pandas as pd | |
import plotly.express as px | |
from plotly.graph_objs import Figure | |
# Dummy data creation | |
def dummy_data_for_plot(metrics, num_days=30): | |
dates = [datetime.now() - timedelta(days=i) for i in range(num_days)] | |
data = [] | |
for metric in metrics: | |
for date in dates: | |
model = f"Model_{metric}" | |
score = np.random.uniform(50, 55) | |
data.append([date, metric, score, model]) | |
df = pd.DataFrame(data, columns=["date", "task", "score", "model"]) | |
return df | |
def create_metric_plot_obj_1( | |
df: pd.DataFrame, metrics: list[str], title: str | |
) -> Figure: | |
""" | |
Create a Plotly figure object with lines representing different metrics | |
and horizontal dotted lines representing human baselines. | |
:param df: The DataFrame containing the metric values, names, and dates. | |
:param metrics: A list of strings representing the names of the metrics | |
to be included in the plot. | |
:param title: A string representing the title of the plot. | |
:return: A Plotly figure object with lines representing metrics and | |
horizontal dotted lines representing human baselines. | |
""" | |
# Filter the DataFrame based on the specified metrics | |
df = df[df["task"].isin(metrics)] | |
# Filter the human baselines based on the specified metrics | |
# filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics} | |
# Create a line figure using plotly express with specified markers and custom data | |
fig = px.line( | |
df, | |
x="date", | |
y="score", | |
color="task", | |
markers=True, | |
custom_data=["task", "score", "model"], | |
title=title, | |
) | |
# Update hovertemplate for better hover interaction experience | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
"Model Name: %{customdata[2]}", | |
"Metric Name: %{customdata[0]}", | |
"Date: %{x}", | |
"Metric Value: %{y}", | |
] | |
) | |
) | |
# Update the range of the y-axis | |
fig.update_layout(yaxis_range=[0, 100]) | |
# Create a dictionary to hold the color mapping for each metric | |
metric_color_mapping = {} | |
# Map each metric name to its color in the figure | |
for trace in fig.data: | |
metric_color_mapping[trace.name] = trace.line.color | |
# Iterate over filtered human baselines and add horizontal lines to the figure | |
# for metric, value in filtered_human_baselines.items(): | |
# color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found | |
# location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position | |
# # Add horizontal line with matched color and positioned annotation | |
# fig.add_hline( | |
# y=value, | |
# line_dash="dot", | |
# annotation_text=f"{metric} human baseline", | |
# annotation_position=location, | |
# annotation_font_size=10, | |
# annotation_font_color=color, | |
# line_color=color, | |
# ) | |
return fig | |
def dummydf(): | |
# data = [{"Model": "gpt-35-turbo-1106", | |
# "Agent": "prompt agent", | |
# "Opponent Model": "gpt-4", | |
# "Opponent Agent": "prompt agent", | |
# 'Breakthrough': 0, | |
# 'Connect Four': 0, | |
# 'Blind Auction': 0, | |
# 'Kuhn Poker': 0, | |
# "Liar's Dice": 0, | |
# 'Negotiation': 0, | |
# 'Nim': 0, | |
# 'Pig': 0, | |
# 'Iterated Prisoners Dilemma': 0, | |
# 'Tic-Tac-Toe': 0 | |
# }, | |
# {"Model": "Llama-2-70b-chat-hf", | |
# "Agent": "prompt agent", | |
# "Opponent Model": "gpt-4", | |
# "Opponent Agent": "prompt agent", | |
# 'Breakthrough': 1, | |
# 'Connect Four': 0, | |
# 'Blind Auction': 0, | |
# 'Kuhn Poker': 0, | |
# "Liar's Dice": 0, | |
# 'Negotiation': 0, | |
# 'Nim': 0, | |
# 'Pig': 0, | |
# 'Iterated Prisoners Dilemma': 0, | |
# 'Tic-Tac-Toe': 0 | |
# }, | |
# {"Model": "gpt-35-turbo-1106", | |
# "Agent": "ToT agent", | |
# "Opponent Model": "gpt-4", | |
# "Opponent Agent": "prompt agent", | |
# 'Breakthrough': 0, | |
# 'Connect Four': 0, | |
# 'Blind Auction': 0, | |
# 'Kuhn Poker': 0, | |
# "Liar's Dice": 0, | |
# 'Negotiation': 0, | |
# 'Nim': 0, | |
# 'Pig': 0, | |
# 'Iterated Prisoners Dilemma': 0, | |
# 'Tic-Tac-Toe': 0 | |
# }, | |
# {"Model": "Llama-2-70b-chat-hf", | |
# "Agent": "CoT agent", | |
# "Opponent Model": "gpt-4", | |
# "Opponent Agent": "prompt agent", | |
# 'Breakthrough': 0, | |
# 'Connect Four': 0, | |
# 'Blind Auction': 0, | |
# 'Kuhn Poker': 0, | |
# "Liar's Dice": 0, | |
# 'Negotiation': 0, | |
# 'Nim': 0, | |
# 'Pig': 0, | |
# 'Iterated Prisoners Dilemma': 0, | |
# 'Tic-Tac-Toe': 0 | |
# }] | |
df = pd.read_csv('./assets/uc_result.csv') | |
print(df) | |
# length = len(df) | |
# for i in range(length): | |
# df.loc[i,"Method_string"]=df.loc[i, "Method"] | |
# df.loc[i,"Method"]=df.loc[i, "Method_string"] | |
# df.drop(columns=["Method_string"]) | |
return df | |