import numpy as np
import random
import torch
import torchvision.transforms as transforms
from PIL import Image
from models.tag2text import tag2text_caption
import gradio as gr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_size = 384
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])
#######Swin Version
pretrained = 'tag2text_swin_14m.pth'
model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit='swin_b' )
model.eval()
model = model.to(device)
def inference(raw_image, input_tag):
raw_image = raw_image.resize((image_size, image_size))
image = transform(raw_image).unsqueeze(0).to(device)
model.threshold = 0.68
if input_tag == '' or input_tag == 'none' or input_tag == 'None':
input_tag_list = None
else:
input_tag_list = []
input_tag_list.append(input_tag.replace(',',' | '))
with torch.no_grad():
caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)
if input_tag_list == None:
tag_1 = tag_predict
tag_2 = ['none']
else:
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
tag_2 = tag_predict
return tag_1[0],tag_2[0],caption[0]
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Textbox(lines=2, label="User Specified Tags (Optional, Enter with commas)")]
outputs = [gr.outputs.Textbox(label="Model Identified Tags"),gr.outputs.Textbox(label="User Specified Tags"), gr.outputs.Textbox(label="Image Caption") ]
title = "Tag2Text"
description = "Welcome to Tag2Text demo! (Supported by Fudan University, OPPO Research Institute, International Digital Economy Academy)
Upload your image to get the tags and caption of the image. Optional: You can also input specified tags to get the corresponding caption.
The model is in the beta version, and we are persisting in refining and iterating upon it."
article = "
Tag2Text: Guiding Language-Image Model via Image Tagging | Github Repo
" demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000483108.jpg',"none"], ['images/COCO_val2014_000000483108.jpg',"power line"], ['images/COCO_val2014_000000483108.jpg',"track, train"] , ]) demo.launch(enable_queue=True)