Spaces:
No application file
No application file
import datetime | |
import json | |
import logging | |
import random | |
import time | |
import uuid | |
from typing import Optional, cast | |
from flask import current_app | |
from flask_login import current_user | |
from sqlalchemy import func | |
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError | |
from core.model_manager import ModelManager | |
from core.model_runtime.entities.model_entities import ModelType | |
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel | |
from core.rag.datasource.keyword.keyword_factory import Keyword | |
from core.rag.models.document import Document as RAGDocument | |
from events.dataset_event import dataset_was_deleted | |
from events.document_event import document_was_deleted | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from libs import helper | |
from models.account import Account | |
from models.dataset import ( | |
AppDatasetJoin, | |
Dataset, | |
DatasetCollectionBinding, | |
DatasetProcessRule, | |
DatasetQuery, | |
Document, | |
DocumentSegment, | |
) | |
from models.model import UploadFile | |
from models.source import DataSourceBinding | |
from services.errors.account import NoPermissionError | |
from services.errors.dataset import DatasetNameDuplicateError | |
from services.errors.document import DocumentIndexingError | |
from services.errors.file import FileNotExistsError | |
from services.feature_service import FeatureModel, FeatureService | |
from services.tag_service import TagService | |
from services.vector_service import VectorService | |
from tasks.clean_notion_document_task import clean_notion_document_task | |
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task | |
from tasks.delete_segment_from_index_task import delete_segment_from_index_task | |
from tasks.disable_segment_from_index_task import disable_segment_from_index_task | |
from tasks.document_indexing_task import document_indexing_task | |
from tasks.document_indexing_update_task import document_indexing_update_task | |
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task | |
from tasks.recover_document_indexing_task import recover_document_indexing_task | |
from tasks.retry_document_indexing_task import retry_document_indexing_task | |
class DatasetService: | |
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None): | |
if user: | |
permission_filter = db.or_(Dataset.created_by == user.id, | |
Dataset.permission == 'all_team_members') | |
else: | |
permission_filter = Dataset.permission == 'all_team_members' | |
query = Dataset.query.filter( | |
db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \ | |
.order_by(Dataset.created_at.desc()) | |
if search: | |
query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%'))) | |
if tag_ids: | |
target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids) | |
if target_ids: | |
query = query.filter(db.and_(Dataset.id.in_(target_ids))) | |
else: | |
return [], 0 | |
datasets = query.paginate( | |
page=page, | |
per_page=per_page, | |
max_per_page=100, | |
error_out=False | |
) | |
return datasets.items, datasets.total | |
def get_process_rules(dataset_id): | |
# get the latest process rule | |
dataset_process_rule = db.session.query(DatasetProcessRule). \ | |
filter(DatasetProcessRule.dataset_id == dataset_id). \ | |
order_by(DatasetProcessRule.created_at.desc()). \ | |
limit(1). \ | |
one_or_none() | |
if dataset_process_rule: | |
mode = dataset_process_rule.mode | |
rules = dataset_process_rule.rules_dict | |
else: | |
mode = DocumentService.DEFAULT_RULES['mode'] | |
rules = DocumentService.DEFAULT_RULES['rules'] | |
return { | |
'mode': mode, | |
'rules': rules | |
} | |
def get_datasets_by_ids(ids, tenant_id): | |
datasets = Dataset.query.filter(Dataset.id.in_(ids), | |
Dataset.tenant_id == tenant_id).paginate( | |
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False) | |
return datasets.items, datasets.total | |
def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account): | |
# check if dataset name already exists | |
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first(): | |
raise DatasetNameDuplicateError( | |
f'Dataset with name {name} already exists.') | |
embedding_model = None | |
if indexing_technique == 'high_quality': | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_default_model_instance( | |
tenant_id=tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING | |
) | |
dataset = Dataset(name=name, indexing_technique=indexing_technique) | |
# dataset = Dataset(name=name, provider=provider, config=config) | |
dataset.created_by = account.id | |
dataset.updated_by = account.id | |
dataset.tenant_id = tenant_id | |
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None | |
dataset.embedding_model = embedding_model.model if embedding_model else None | |
db.session.add(dataset) | |
db.session.commit() | |
return dataset | |
def get_dataset(dataset_id): | |
return Dataset.query.filter_by( | |
id=dataset_id | |
).first() | |
def check_dataset_model_setting(dataset): | |
if dataset.indexing_technique == 'high_quality': | |
try: | |
model_manager = ModelManager() | |
model_manager.get_model_instance( | |
tenant_id=dataset.tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider.") | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(f"The dataset in unavailable, due to: " | |
f"{ex.description}") | |
def update_dataset(dataset_id, data, user): | |
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'} | |
dataset = DatasetService.get_dataset(dataset_id) | |
DatasetService.check_dataset_permission(dataset, user) | |
action = None | |
if dataset.indexing_technique != data['indexing_technique']: | |
# if update indexing_technique | |
if data['indexing_technique'] == 'economy': | |
action = 'remove' | |
filtered_data['embedding_model'] = None | |
filtered_data['embedding_model_provider'] = None | |
filtered_data['collection_binding_id'] = None | |
elif data['indexing_technique'] == 'high_quality': | |
action = 'add' | |
# get embedding model setting | |
try: | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=data['embedding_model_provider'], | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=data['embedding_model'] | |
) | |
filtered_data['embedding_model'] = embedding_model.model | |
filtered_data['embedding_model_provider'] = embedding_model.provider | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, | |
embedding_model.model | |
) | |
filtered_data['collection_binding_id'] = dataset_collection_binding.id | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider.") | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(ex.description) | |
else: | |
if data['embedding_model_provider'] != dataset.embedding_model_provider or \ | |
data['embedding_model'] != dataset.embedding_model: | |
action = 'update' | |
try: | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=data['embedding_model_provider'], | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=data['embedding_model'] | |
) | |
filtered_data['embedding_model'] = embedding_model.model | |
filtered_data['embedding_model_provider'] = embedding_model.provider | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, | |
embedding_model.model | |
) | |
filtered_data['collection_binding_id'] = dataset_collection_binding.id | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider.") | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(ex.description) | |
filtered_data['updated_by'] = user.id | |
filtered_data['updated_at'] = datetime.datetime.now() | |
# update Retrieval model | |
filtered_data['retrieval_model'] = data['retrieval_model'] | |
dataset.query.filter_by(id=dataset_id).update(filtered_data) | |
db.session.commit() | |
if action: | |
deal_dataset_vector_index_task.delay(dataset_id, action) | |
return dataset | |
def delete_dataset(dataset_id, user): | |
# todo: cannot delete dataset if it is being processed | |
dataset = DatasetService.get_dataset(dataset_id) | |
if dataset is None: | |
return False | |
DatasetService.check_dataset_permission(dataset, user) | |
dataset_was_deleted.send(dataset) | |
db.session.delete(dataset) | |
db.session.commit() | |
return True | |
def check_dataset_permission(dataset, user): | |
if dataset.tenant_id != user.current_tenant_id: | |
logging.debug( | |
f'User {user.id} does not have permission to access dataset {dataset.id}') | |
raise NoPermissionError( | |
'You do not have permission to access this dataset.') | |
if dataset.permission == 'only_me' and dataset.created_by != user.id: | |
logging.debug( | |
f'User {user.id} does not have permission to access dataset {dataset.id}') | |
raise NoPermissionError( | |
'You do not have permission to access this dataset.') | |
def get_dataset_queries(dataset_id: str, page: int, per_page: int): | |
dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \ | |
.order_by(db.desc(DatasetQuery.created_at)) \ | |
.paginate( | |
page=page, per_page=per_page, max_per_page=100, error_out=False | |
) | |
return dataset_queries.items, dataset_queries.total | |
def get_related_apps(dataset_id: str): | |
return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \ | |
.order_by(db.desc(AppDatasetJoin.created_at)).all() | |
class DocumentService: | |
DEFAULT_RULES = { | |
'mode': 'custom', | |
'rules': { | |
'pre_processing_rules': [ | |
{'id': 'remove_extra_spaces', 'enabled': True}, | |
{'id': 'remove_urls_emails', 'enabled': False} | |
], | |
'segmentation': { | |
'delimiter': '\n', | |
'max_tokens': 500, | |
'chunk_overlap': 50 | |
} | |
} | |
} | |
DOCUMENT_METADATA_SCHEMA = { | |
"book": { | |
"title": str, | |
"language": str, | |
"author": str, | |
"publisher": str, | |
"publication_date": str, | |
"isbn": str, | |
"category": str, | |
}, | |
"web_page": { | |
"title": str, | |
"url": str, | |
"language": str, | |
"publish_date": str, | |
"author/publisher": str, | |
"topic/keywords": str, | |
"description": str, | |
}, | |
"paper": { | |
"title": str, | |
"language": str, | |
"author": str, | |
"publish_date": str, | |
"journal/conference_name": str, | |
"volume/issue/page_numbers": str, | |
"doi": str, | |
"topic/keywords": str, | |
"abstract": str, | |
}, | |
"social_media_post": { | |
"platform": str, | |
"author/username": str, | |
"publish_date": str, | |
"post_url": str, | |
"topic/tags": str, | |
}, | |
"wikipedia_entry": { | |
"title": str, | |
"language": str, | |
"web_page_url": str, | |
"last_edit_date": str, | |
"editor/contributor": str, | |
"summary/introduction": str, | |
}, | |
"personal_document": { | |
"title": str, | |
"author": str, | |
"creation_date": str, | |
"last_modified_date": str, | |
"document_type": str, | |
"tags/category": str, | |
}, | |
"business_document": { | |
"title": str, | |
"author": str, | |
"creation_date": str, | |
"last_modified_date": str, | |
"document_type": str, | |
"department/team": str, | |
}, | |
"im_chat_log": { | |
"chat_platform": str, | |
"chat_participants/group_name": str, | |
"start_date": str, | |
"end_date": str, | |
"summary": str, | |
}, | |
"synced_from_notion": { | |
"title": str, | |
"language": str, | |
"author/creator": str, | |
"creation_date": str, | |
"last_modified_date": str, | |
"notion_page_link": str, | |
"category/tags": str, | |
"description": str, | |
}, | |
"synced_from_github": { | |
"repository_name": str, | |
"repository_description": str, | |
"repository_owner/organization": str, | |
"code_filename": str, | |
"code_file_path": str, | |
"programming_language": str, | |
"github_link": str, | |
"open_source_license": str, | |
"commit_date": str, | |
"commit_author": str, | |
}, | |
"others": dict | |
} | |
def get_document(dataset_id: str, document_id: str) -> Optional[Document]: | |
document = db.session.query(Document).filter( | |
Document.id == document_id, | |
Document.dataset_id == dataset_id | |
).first() | |
return document | |
def get_document_by_id(document_id: str) -> Optional[Document]: | |
document = db.session.query(Document).filter( | |
Document.id == document_id | |
).first() | |
return document | |
def get_document_by_dataset_id(dataset_id: str) -> list[Document]: | |
documents = db.session.query(Document).filter( | |
Document.dataset_id == dataset_id, | |
Document.enabled == True | |
).all() | |
return documents | |
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]: | |
documents = db.session.query(Document).filter( | |
Document.dataset_id == dataset_id, | |
Document.indexing_status.in_(['error', 'paused']) | |
).all() | |
return documents | |
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]: | |
documents = db.session.query(Document).filter( | |
Document.batch == batch, | |
Document.dataset_id == dataset_id, | |
Document.tenant_id == current_user.current_tenant_id | |
).all() | |
return documents | |
def get_document_file_detail(file_id: str): | |
file_detail = db.session.query(UploadFile). \ | |
filter(UploadFile.id == file_id). \ | |
one_or_none() | |
return file_detail | |
def check_archived(document): | |
if document.archived: | |
return True | |
else: | |
return False | |
def delete_document(document): | |
# trigger document_was_deleted signal | |
document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form) | |
db.session.delete(document) | |
db.session.commit() | |
def pause_document(document): | |
if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]: | |
raise DocumentIndexingError() | |
# update document to be paused | |
document.is_paused = True | |
document.paused_by = current_user.id | |
document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.add(document) | |
db.session.commit() | |
# set document paused flag | |
indexing_cache_key = 'document_{}_is_paused'.format(document.id) | |
redis_client.setnx(indexing_cache_key, "True") | |
def recover_document(document): | |
if not document.is_paused: | |
raise DocumentIndexingError() | |
# update document to be recover | |
document.is_paused = False | |
document.paused_by = None | |
document.paused_at = None | |
db.session.add(document) | |
db.session.commit() | |
# delete paused flag | |
indexing_cache_key = 'document_{}_is_paused'.format(document.id) | |
redis_client.delete(indexing_cache_key) | |
# trigger async task | |
recover_document_indexing_task.delay(document.dataset_id, document.id) | |
def retry_document(dataset_id: str, documents: list[Document]): | |
for document in documents: | |
# retry document indexing | |
document.indexing_status = 'waiting' | |
db.session.add(document) | |
db.session.commit() | |
# add retry flag | |
retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id) | |
redis_client.setex(retry_indexing_cache_key, 600, 1) | |
# trigger async task | |
document_ids = [document.id for document in documents] | |
retry_document_indexing_task.delay(dataset_id, document_ids) | |
def get_documents_position(dataset_id): | |
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first() | |
if document: | |
return document.position + 1 | |
else: | |
return 1 | |
def save_document_with_dataset_id(dataset: Dataset, document_data: dict, | |
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None, | |
created_from: str = 'web'): | |
# check document limit | |
features = FeatureService.get_features(current_user.current_tenant_id) | |
if features.billing.enabled: | |
if 'original_document_id' not in document_data or not document_data['original_document_id']: | |
count = 0 | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] | |
count = len(upload_file_list) | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] | |
for notion_info in notion_info_list: | |
count = count + len(notion_info['pages']) | |
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT']) | |
if count > batch_upload_limit: | |
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
DocumentService.check_documents_upload_quota(count, features) | |
# if dataset is empty, update dataset data_source_type | |
if not dataset.data_source_type: | |
dataset.data_source_type = document_data["data_source"]["type"] | |
if not dataset.indexing_technique: | |
if 'indexing_technique' not in document_data \ | |
or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST: | |
raise ValueError("Indexing technique is required") | |
dataset.indexing_technique = document_data["indexing_technique"] | |
if document_data["indexing_technique"] == 'high_quality': | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_default_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING | |
) | |
dataset.embedding_model = embedding_model.model | |
dataset.embedding_model_provider = embedding_model.provider | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, | |
embedding_model.model | |
) | |
dataset.collection_binding_id = dataset_collection_binding.id | |
if not dataset.retrieval_model: | |
default_retrieval_model = { | |
'search_method': 'semantic_search', | |
'reranking_enable': False, | |
'reranking_model': { | |
'reranking_provider_name': '', | |
'reranking_model_name': '' | |
}, | |
'top_k': 2, | |
'score_threshold_enabled': False | |
} | |
dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get( | |
'retrieval_model') else default_retrieval_model | |
documents = [] | |
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999)) | |
if document_data.get("original_document_id"): | |
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account) | |
documents.append(document) | |
else: | |
# save process rule | |
if not dataset_process_rule: | |
process_rule = document_data["process_rule"] | |
if process_rule["mode"] == "custom": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(process_rule["rules"]), | |
created_by=account.id | |
) | |
elif process_rule["mode"] == "automatic": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), | |
created_by=account.id | |
) | |
db.session.add(dataset_process_rule) | |
db.session.commit() | |
position = DocumentService.get_documents_position(dataset.id) | |
document_ids = [] | |
duplicate_document_ids = [] | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] | |
for file_id in upload_file_list: | |
file = db.session.query(UploadFile).filter( | |
UploadFile.tenant_id == dataset.tenant_id, | |
UploadFile.id == file_id | |
).first() | |
# raise error if file not found | |
if not file: | |
raise FileNotExistsError() | |
file_name = file.name | |
data_source_info = { | |
"upload_file_id": file_id, | |
} | |
# check duplicate | |
if document_data.get('duplicate', False): | |
document = Document.query.filter_by( | |
dataset_id=dataset.id, | |
tenant_id=current_user.current_tenant_id, | |
data_source_type='upload_file', | |
enabled=True, | |
name=file_name | |
).first() | |
if document: | |
document.dataset_process_rule_id = dataset_process_rule.id | |
document.updated_at = datetime.datetime.utcnow() | |
document.created_from = created_from | |
document.doc_form = document_data['doc_form'] | |
document.doc_language = document_data['doc_language'] | |
document.data_source_info = json.dumps(data_source_info) | |
document.batch = batch | |
document.indexing_status = 'waiting' | |
db.session.add(document) | |
documents.append(document) | |
duplicate_document_ids.append(document.id) | |
continue | |
document = DocumentService.build_document(dataset, dataset_process_rule.id, | |
document_data["data_source"]["type"], | |
document_data["doc_form"], | |
document_data["doc_language"], | |
data_source_info, created_from, position, | |
account, file_name, batch) | |
db.session.add(document) | |
db.session.flush() | |
document_ids.append(document.id) | |
documents.append(document) | |
position += 1 | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] | |
exist_page_ids = [] | |
exist_document = dict() | |
documents = Document.query.filter_by( | |
dataset_id=dataset.id, | |
tenant_id=current_user.current_tenant_id, | |
data_source_type='notion_import', | |
enabled=True | |
).all() | |
if documents: | |
for document in documents: | |
data_source_info = json.loads(document.data_source_info) | |
exist_page_ids.append(data_source_info['notion_page_id']) | |
exist_document[data_source_info['notion_page_id']] = document.id | |
for notion_info in notion_info_list: | |
workspace_id = notion_info['workspace_id'] | |
data_source_binding = DataSourceBinding.query.filter( | |
db.and_( | |
DataSourceBinding.tenant_id == current_user.current_tenant_id, | |
DataSourceBinding.provider == 'notion', | |
DataSourceBinding.disabled == False, | |
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"' | |
) | |
).first() | |
if not data_source_binding: | |
raise ValueError('Data source binding not found.') | |
for page in notion_info['pages']: | |
if page['page_id'] not in exist_page_ids: | |
data_source_info = { | |
"notion_workspace_id": workspace_id, | |
"notion_page_id": page['page_id'], | |
"notion_page_icon": page['page_icon'], | |
"type": page['type'] | |
} | |
document = DocumentService.build_document(dataset, dataset_process_rule.id, | |
document_data["data_source"]["type"], | |
document_data["doc_form"], | |
document_data["doc_language"], | |
data_source_info, created_from, position, | |
account, page['page_name'], batch) | |
db.session.add(document) | |
db.session.flush() | |
document_ids.append(document.id) | |
documents.append(document) | |
position += 1 | |
else: | |
exist_document.pop(page['page_id']) | |
# delete not selected documents | |
if len(exist_document) > 0: | |
clean_notion_document_task.delay(list(exist_document.values()), dataset.id) | |
db.session.commit() | |
# trigger async task | |
if document_ids: | |
document_indexing_task.delay(dataset.id, document_ids) | |
if duplicate_document_ids: | |
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids) | |
return documents, batch | |
def check_documents_upload_quota(count: int, features: FeatureModel): | |
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size | |
if count > can_upload_size: | |
raise ValueError( | |
f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.') | |
def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str, | |
document_language: str, data_source_info: dict, created_from: str, position: int, | |
account: Account, | |
name: str, batch: str): | |
document = Document( | |
tenant_id=dataset.tenant_id, | |
dataset_id=dataset.id, | |
position=position, | |
data_source_type=data_source_type, | |
data_source_info=json.dumps(data_source_info), | |
dataset_process_rule_id=process_rule_id, | |
batch=batch, | |
name=name, | |
created_from=created_from, | |
created_by=account.id, | |
doc_form=document_form, | |
doc_language=document_language | |
) | |
return document | |
def get_tenant_documents_count(): | |
documents_count = Document.query.filter(Document.completed_at.isnot(None), | |
Document.enabled == True, | |
Document.archived == False, | |
Document.tenant_id == current_user.current_tenant_id).count() | |
return documents_count | |
def update_document_with_dataset_id(dataset: Dataset, document_data: dict, | |
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None, | |
created_from: str = 'web'): | |
DatasetService.check_dataset_model_setting(dataset) | |
document = DocumentService.get_document(dataset.id, document_data["original_document_id"]) | |
if document.display_status != 'available': | |
raise ValueError("Document is not available") | |
# update document name | |
if document_data.get('name'): | |
document.name = document_data['name'] | |
# save process rule | |
if document_data.get('process_rule'): | |
process_rule = document_data["process_rule"] | |
if process_rule["mode"] == "custom": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(process_rule["rules"]), | |
created_by=account.id | |
) | |
elif process_rule["mode"] == "automatic": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), | |
created_by=account.id | |
) | |
db.session.add(dataset_process_rule) | |
db.session.commit() | |
document.dataset_process_rule_id = dataset_process_rule.id | |
# update document data source | |
if document_data.get('data_source'): | |
file_name = '' | |
data_source_info = {} | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] | |
for file_id in upload_file_list: | |
file = db.session.query(UploadFile).filter( | |
UploadFile.tenant_id == dataset.tenant_id, | |
UploadFile.id == file_id | |
).first() | |
# raise error if file not found | |
if not file: | |
raise FileNotExistsError() | |
file_name = file.name | |
data_source_info = { | |
"upload_file_id": file_id, | |
} | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] | |
for notion_info in notion_info_list: | |
workspace_id = notion_info['workspace_id'] | |
data_source_binding = DataSourceBinding.query.filter( | |
db.and_( | |
DataSourceBinding.tenant_id == current_user.current_tenant_id, | |
DataSourceBinding.provider == 'notion', | |
DataSourceBinding.disabled == False, | |
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"' | |
) | |
).first() | |
if not data_source_binding: | |
raise ValueError('Data source binding not found.') | |
for page in notion_info['pages']: | |
data_source_info = { | |
"notion_workspace_id": workspace_id, | |
"notion_page_id": page['page_id'], | |
"notion_page_icon": page['page_icon'], | |
"type": page['type'] | |
} | |
document.data_source_type = document_data["data_source"]["type"] | |
document.data_source_info = json.dumps(data_source_info) | |
document.name = file_name | |
# update document to be waiting | |
document.indexing_status = 'waiting' | |
document.completed_at = None | |
document.processing_started_at = None | |
document.parsing_completed_at = None | |
document.cleaning_completed_at = None | |
document.splitting_completed_at = None | |
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
document.created_from = created_from | |
document.doc_form = document_data['doc_form'] | |
db.session.add(document) | |
db.session.commit() | |
# update document segment | |
update_params = { | |
DocumentSegment.status: 're_segment' | |
} | |
DocumentSegment.query.filter_by(document_id=document.id).update(update_params) | |
db.session.commit() | |
# trigger async task | |
document_indexing_update_task.delay(document.dataset_id, document.id) | |
return document | |
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account): | |
features = FeatureService.get_features(current_user.current_tenant_id) | |
if features.billing.enabled: | |
count = 0 | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] | |
count = len(upload_file_list) | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] | |
for notion_info in notion_info_list: | |
count = count + len(notion_info['pages']) | |
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT']) | |
if count > batch_upload_limit: | |
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
DocumentService.check_documents_upload_quota(count, features) | |
embedding_model = None | |
dataset_collection_binding_id = None | |
retrieval_model = None | |
if document_data['indexing_technique'] == 'high_quality': | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_default_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING | |
) | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, | |
embedding_model.model | |
) | |
dataset_collection_binding_id = dataset_collection_binding.id | |
if document_data.get('retrieval_model'): | |
retrieval_model = document_data['retrieval_model'] | |
else: | |
default_retrieval_model = { | |
'search_method': 'semantic_search', | |
'reranking_enable': False, | |
'reranking_model': { | |
'reranking_provider_name': '', | |
'reranking_model_name': '' | |
}, | |
'top_k': 2, | |
'score_threshold_enabled': False | |
} | |
retrieval_model = default_retrieval_model | |
# save dataset | |
dataset = Dataset( | |
tenant_id=tenant_id, | |
name='', | |
data_source_type=document_data["data_source"]["type"], | |
indexing_technique=document_data["indexing_technique"], | |
created_by=account.id, | |
embedding_model=embedding_model.model if embedding_model else None, | |
embedding_model_provider=embedding_model.provider if embedding_model else None, | |
collection_binding_id=dataset_collection_binding_id, | |
retrieval_model=retrieval_model | |
) | |
db.session.add(dataset) | |
db.session.flush() | |
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account) | |
cut_length = 18 | |
cut_name = documents[0].name[:cut_length] | |
dataset.name = cut_name + '...' | |
dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name | |
db.session.commit() | |
return dataset, documents, batch | |
def document_create_args_validate(cls, args: dict): | |
if 'original_document_id' not in args or not args['original_document_id']: | |
DocumentService.data_source_args_validate(args) | |
DocumentService.process_rule_args_validate(args) | |
else: | |
if ('data_source' not in args and not args['data_source']) \ | |
and ('process_rule' not in args and not args['process_rule']): | |
raise ValueError("Data source or Process rule is required") | |
else: | |
if args.get('data_source'): | |
DocumentService.data_source_args_validate(args) | |
if args.get('process_rule'): | |
DocumentService.process_rule_args_validate(args) | |
def data_source_args_validate(cls, args: dict): | |
if 'data_source' not in args or not args['data_source']: | |
raise ValueError("Data source is required") | |
if not isinstance(args['data_source'], dict): | |
raise ValueError("Data source is invalid") | |
if 'type' not in args['data_source'] or not args['data_source']['type']: | |
raise ValueError("Data source type is required") | |
if args['data_source']['type'] not in Document.DATA_SOURCES: | |
raise ValueError("Data source type is invalid") | |
if 'info_list' not in args['data_source'] or not args['data_source']['info_list']: | |
raise ValueError("Data source info is required") | |
if args['data_source']['type'] == 'upload_file': | |
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][ | |
'file_info_list']: | |
raise ValueError("File source info is required") | |
if args['data_source']['type'] == 'notion_import': | |
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][ | |
'notion_info_list']: | |
raise ValueError("Notion source info is required") | |
def process_rule_args_validate(cls, args: dict): | |
if 'process_rule' not in args or not args['process_rule']: | |
raise ValueError("Process rule is required") | |
if not isinstance(args['process_rule'], dict): | |
raise ValueError("Process rule is invalid") | |
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']: | |
raise ValueError("Process rule mode is required") | |
if args['process_rule']['mode'] not in DatasetProcessRule.MODES: | |
raise ValueError("Process rule mode is invalid") | |
if args['process_rule']['mode'] == 'automatic': | |
args['process_rule']['rules'] = {} | |
else: | |
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']: | |
raise ValueError("Process rule rules is required") | |
if not isinstance(args['process_rule']['rules'], dict): | |
raise ValueError("Process rule rules is invalid") | |
if 'pre_processing_rules' not in args['process_rule']['rules'] \ | |
or args['process_rule']['rules']['pre_processing_rules'] is None: | |
raise ValueError("Process rule pre_processing_rules is required") | |
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list): | |
raise ValueError("Process rule pre_processing_rules is invalid") | |
unique_pre_processing_rule_dicts = {} | |
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']: | |
if 'id' not in pre_processing_rule or not pre_processing_rule['id']: | |
raise ValueError("Process rule pre_processing_rules id is required") | |
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES: | |
raise ValueError("Process rule pre_processing_rules id is invalid") | |
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None: | |
raise ValueError("Process rule pre_processing_rules enabled is required") | |
if not isinstance(pre_processing_rule['enabled'], bool): | |
raise ValueError("Process rule pre_processing_rules enabled is invalid") | |
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule | |
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values()) | |
if 'segmentation' not in args['process_rule']['rules'] \ | |
or args['process_rule']['rules']['segmentation'] is None: | |
raise ValueError("Process rule segmentation is required") | |
if not isinstance(args['process_rule']['rules']['segmentation'], dict): | |
raise ValueError("Process rule segmentation is invalid") | |
if 'separator' not in args['process_rule']['rules']['segmentation'] \ | |
or not args['process_rule']['rules']['segmentation']['separator']: | |
raise ValueError("Process rule segmentation separator is required") | |
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str): | |
raise ValueError("Process rule segmentation separator is invalid") | |
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \ | |
or not args['process_rule']['rules']['segmentation']['max_tokens']: | |
raise ValueError("Process rule segmentation max_tokens is required") | |
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int): | |
raise ValueError("Process rule segmentation max_tokens is invalid") | |
def estimate_args_validate(cls, args: dict): | |
if 'info_list' not in args or not args['info_list']: | |
raise ValueError("Data source info is required") | |
if not isinstance(args['info_list'], dict): | |
raise ValueError("Data info is invalid") | |
if 'process_rule' not in args or not args['process_rule']: | |
raise ValueError("Process rule is required") | |
if not isinstance(args['process_rule'], dict): | |
raise ValueError("Process rule is invalid") | |
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']: | |
raise ValueError("Process rule mode is required") | |
if args['process_rule']['mode'] not in DatasetProcessRule.MODES: | |
raise ValueError("Process rule mode is invalid") | |
if args['process_rule']['mode'] == 'automatic': | |
args['process_rule']['rules'] = {} | |
else: | |
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']: | |
raise ValueError("Process rule rules is required") | |
if not isinstance(args['process_rule']['rules'], dict): | |
raise ValueError("Process rule rules is invalid") | |
if 'pre_processing_rules' not in args['process_rule']['rules'] \ | |
or args['process_rule']['rules']['pre_processing_rules'] is None: | |
raise ValueError("Process rule pre_processing_rules is required") | |
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list): | |
raise ValueError("Process rule pre_processing_rules is invalid") | |
unique_pre_processing_rule_dicts = {} | |
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']: | |
if 'id' not in pre_processing_rule or not pre_processing_rule['id']: | |
raise ValueError("Process rule pre_processing_rules id is required") | |
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES: | |
raise ValueError("Process rule pre_processing_rules id is invalid") | |
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None: | |
raise ValueError("Process rule pre_processing_rules enabled is required") | |
if not isinstance(pre_processing_rule['enabled'], bool): | |
raise ValueError("Process rule pre_processing_rules enabled is invalid") | |
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule | |
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values()) | |
if 'segmentation' not in args['process_rule']['rules'] \ | |
or args['process_rule']['rules']['segmentation'] is None: | |
raise ValueError("Process rule segmentation is required") | |
if not isinstance(args['process_rule']['rules']['segmentation'], dict): | |
raise ValueError("Process rule segmentation is invalid") | |
if 'separator' not in args['process_rule']['rules']['segmentation'] \ | |
or not args['process_rule']['rules']['segmentation']['separator']: | |
raise ValueError("Process rule segmentation separator is required") | |
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str): | |
raise ValueError("Process rule segmentation separator is invalid") | |
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \ | |
or not args['process_rule']['rules']['segmentation']['max_tokens']: | |
raise ValueError("Process rule segmentation max_tokens is required") | |
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int): | |
raise ValueError("Process rule segmentation max_tokens is invalid") | |
class SegmentService: | |
def segment_create_args_validate(cls, args: dict, document: Document): | |
if document.doc_form == 'qa_model': | |
if 'answer' not in args or not args['answer']: | |
raise ValueError("Answer is required") | |
if not args['answer'].strip(): | |
raise ValueError("Answer is empty") | |
if 'content' not in args or not args['content'] or not args['content'].strip(): | |
raise ValueError("Content is empty") | |
def create_segment(cls, args: dict, document: Document, dataset: Dataset): | |
content = args['content'] | |
doc_id = str(uuid.uuid4()) | |
segment_hash = helper.generate_text_hash(content) | |
tokens = 0 | |
if dataset.indexing_technique == 'high_quality': | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
# calc embedding use tokens | |
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance) | |
tokens = model_type_instance.get_num_tokens( | |
model=embedding_model.model, | |
credentials=embedding_model.credentials, | |
texts=[content] | |
) | |
lock_name = 'add_segment_lock_document_id_{}'.format(document.id) | |
with redis_client.lock(lock_name, timeout=600): | |
max_position = db.session.query(func.max(DocumentSegment.position)).filter( | |
DocumentSegment.document_id == document.id | |
).scalar() | |
segment_document = DocumentSegment( | |
tenant_id=current_user.current_tenant_id, | |
dataset_id=document.dataset_id, | |
document_id=document.id, | |
index_node_id=doc_id, | |
index_node_hash=segment_hash, | |
position=max_position + 1 if max_position else 1, | |
content=content, | |
word_count=len(content), | |
tokens=tokens, | |
status='completed', | |
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
created_by=current_user.id | |
) | |
if document.doc_form == 'qa_model': | |
segment_document.answer = args['answer'] | |
db.session.add(segment_document) | |
db.session.commit() | |
# save vector index | |
try: | |
VectorService.create_segments_vector([args['keywords']], [segment_document], dataset) | |
except Exception as e: | |
logging.exception("create segment index failed") | |
segment_document.enabled = False | |
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment_document.status = 'error' | |
segment_document.error = str(e) | |
db.session.commit() | |
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first() | |
return segment | |
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset): | |
lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id) | |
with redis_client.lock(lock_name, timeout=600): | |
embedding_model = None | |
if dataset.indexing_technique == 'high_quality': | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
max_position = db.session.query(func.max(DocumentSegment.position)).filter( | |
DocumentSegment.document_id == document.id | |
).scalar() | |
pre_segment_data_list = [] | |
segment_data_list = [] | |
keywords_list = [] | |
for segment_item in segments: | |
content = segment_item['content'] | |
doc_id = str(uuid.uuid4()) | |
segment_hash = helper.generate_text_hash(content) | |
tokens = 0 | |
if dataset.indexing_technique == 'high_quality' and embedding_model: | |
# calc embedding use tokens | |
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance) | |
tokens = model_type_instance.get_num_tokens( | |
model=embedding_model.model, | |
credentials=embedding_model.credentials, | |
texts=[content] | |
) | |
segment_document = DocumentSegment( | |
tenant_id=current_user.current_tenant_id, | |
dataset_id=document.dataset_id, | |
document_id=document.id, | |
index_node_id=doc_id, | |
index_node_hash=segment_hash, | |
position=max_position + 1 if max_position else 1, | |
content=content, | |
word_count=len(content), | |
tokens=tokens, | |
status='completed', | |
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
created_by=current_user.id | |
) | |
if document.doc_form == 'qa_model': | |
segment_document.answer = segment_item['answer'] | |
db.session.add(segment_document) | |
segment_data_list.append(segment_document) | |
pre_segment_data_list.append(segment_document) | |
keywords_list.append(segment_item['keywords']) | |
try: | |
# save vector index | |
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset) | |
except Exception as e: | |
logging.exception("create segment index failed") | |
for segment_document in segment_data_list: | |
segment_document.enabled = False | |
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment_document.status = 'error' | |
segment_document.error = str(e) | |
db.session.commit() | |
return segment_data_list | |
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset): | |
indexing_cache_key = 'segment_{}_indexing'.format(segment.id) | |
cache_result = redis_client.get(indexing_cache_key) | |
if cache_result is not None: | |
raise ValueError("Segment is indexing, please try again later") | |
if 'enabled' in args and args['enabled'] is not None: | |
action = args['enabled'] | |
if segment.enabled != action: | |
if not action: | |
segment.enabled = action | |
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.disabled_by = current_user.id | |
db.session.add(segment) | |
db.session.commit() | |
# Set cache to prevent indexing the same segment multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
disable_segment_from_index_task.delay(segment.id) | |
return segment | |
if not segment.enabled: | |
if 'enabled' in args and args['enabled'] is not None: | |
if not args['enabled']: | |
raise ValueError("Can't update disabled segment") | |
else: | |
raise ValueError("Can't update disabled segment") | |
try: | |
content = args['content'] | |
if segment.content == content: | |
if document.doc_form == 'qa_model': | |
segment.answer = args['answer'] | |
if args.get('keywords'): | |
segment.keywords = args['keywords'] | |
segment.enabled = True | |
segment.disabled_at = None | |
segment.disabled_by = None | |
db.session.add(segment) | |
db.session.commit() | |
# update segment index task | |
if args['keywords']: | |
keyword = Keyword(dataset) | |
keyword.delete_by_ids([segment.index_node_id]) | |
document = RAGDocument( | |
page_content=segment.content, | |
metadata={ | |
"doc_id": segment.index_node_id, | |
"doc_hash": segment.index_node_hash, | |
"document_id": segment.document_id, | |
"dataset_id": segment.dataset_id, | |
} | |
) | |
keyword.add_texts([document], keywords_list=[args['keywords']]) | |
else: | |
segment_hash = helper.generate_text_hash(content) | |
tokens = 0 | |
if dataset.indexing_technique == 'high_quality': | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
# calc embedding use tokens | |
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance) | |
tokens = model_type_instance.get_num_tokens( | |
model=embedding_model.model, | |
credentials=embedding_model.credentials, | |
texts=[content] | |
) | |
segment.content = content | |
segment.index_node_hash = segment_hash | |
segment.word_count = len(content) | |
segment.tokens = tokens | |
segment.status = 'completed' | |
segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.updated_by = current_user.id | |
segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.enabled = True | |
segment.disabled_at = None | |
segment.disabled_by = None | |
if document.doc_form == 'qa_model': | |
segment.answer = args['answer'] | |
db.session.add(segment) | |
db.session.commit() | |
# update segment vector index | |
VectorService.update_segment_vector(args['keywords'], segment, dataset) | |
except Exception as e: | |
logging.exception("update segment index failed") | |
segment.enabled = False | |
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.status = 'error' | |
segment.error = str(e) | |
db.session.commit() | |
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first() | |
return segment | |
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset): | |
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id) | |
cache_result = redis_client.get(indexing_cache_key) | |
if cache_result is not None: | |
raise ValueError("Segment is deleting.") | |
# enabled segment need to delete index | |
if segment.enabled: | |
# send delete segment index task | |
redis_client.setex(indexing_cache_key, 600, 1) | |
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id) | |
db.session.delete(segment) | |
db.session.commit() | |
class DatasetCollectionBindingService: | |
def get_dataset_collection_binding(cls, provider_name: str, model_name: str, | |
collection_type: str = 'dataset') -> DatasetCollectionBinding: | |
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ | |
filter(DatasetCollectionBinding.provider_name == provider_name, | |
DatasetCollectionBinding.model_name == model_name, | |
DatasetCollectionBinding.type == collection_type). \ | |
order_by(DatasetCollectionBinding.created_at). \ | |
first() | |
if not dataset_collection_binding: | |
dataset_collection_binding = DatasetCollectionBinding( | |
provider_name=provider_name, | |
model_name=model_name, | |
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())), | |
type=collection_type | |
) | |
db.session.add(dataset_collection_binding) | |
db.session.commit() | |
return dataset_collection_binding | |
def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str, | |
collection_type: str = 'dataset') -> DatasetCollectionBinding: | |
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ | |
filter(DatasetCollectionBinding.id == collection_binding_id, | |
DatasetCollectionBinding.type == collection_type). \ | |
order_by(DatasetCollectionBinding.created_at). \ | |
first() | |
return dataset_collection_binding | |