File size: 8,177 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from collections import OrderedDict

import torch
from packaging import version
from torch import Tensor, nn

from .utils import logging


logger = logging.get_logger(__name__)


class PytorchGELUTanh(nn.Module):
    """
    A fast C implementation of the tanh approximation of the GeLU activation function. See
    https://arxiv.org/abs/1606.08415.

    This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
    match due to rounding errors.
    """

    def __init__(self):
        super().__init__()
        if version.parse(torch.__version__) < version.parse("1.12.0"):
            raise ImportError(
                f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
                "PytorchGELUTanh. Please upgrade torch."
            )

    def forward(self, input: Tensor) -> Tensor:
        return nn.functional.gelu(input, approximate="tanh")


class NewGELUActivation(nn.Module):
    """
    Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
    the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
    """

    def forward(self, input: Tensor) -> Tensor:
        return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))


class GELUActivation(nn.Module):
    """
    Original Implementation of the GELU activation function in Google BERT repo when initially created. For
    information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
    torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
    Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, use_gelu_python: bool = False):
        super().__init__()
        if use_gelu_python:
            self.act = self._gelu_python
        else:
            self.act = nn.functional.gelu

    def _gelu_python(self, input: Tensor) -> Tensor:
        return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))

    def forward(self, input: Tensor) -> Tensor:
        return self.act(input)


class FastGELUActivation(nn.Module):
    """
    Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
    """

    def forward(self, input: Tensor) -> Tensor:
        return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))


class QuickGELUActivation(nn.Module):
    """
    Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
    """

    def forward(self, input: Tensor) -> Tensor:
        return input * torch.sigmoid(1.702 * input)


class ClippedGELUActivation(nn.Module):
    """
    Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
    it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
    https://arxiv.org/abs/2004.09602.

    Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
    initially created.

    For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
    torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
    """

    def __init__(self, min: float, max: float):
        if min > max:
            raise ValueError(f"min should be < max (got min: {min}, max: {max})")

        super().__init__()
        self.min = min
        self.max = max

    def forward(self, x: Tensor) -> Tensor:
        return torch.clip(gelu(x), self.min, self.max)


class AccurateGELUActivation(nn.Module):
    """
    Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
    https://github.com/hendrycks/GELUs

    Implemented along with MEGA (Moving Average Equipped Gated Attention)
    """

    def __init__(self):
        super().__init__()
        self.precomputed_constant = math.sqrt(2 / math.pi)

    def forward(self, input: Tensor) -> Tensor:
        return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))


class MishActivation(nn.Module):
    """
    See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
    visit the official repository for the paper: https://github.com/digantamisra98/Mish
    """

    def __init__(self):
        super().__init__()
        if version.parse(torch.__version__) < version.parse("1.9.0"):
            self.act = self._mish_python
        else:
            self.act = nn.functional.mish

    def _mish_python(self, input: Tensor) -> Tensor:
        return input * torch.tanh(nn.functional.softplus(input))

    def forward(self, input: Tensor) -> Tensor:
        return self.act(input)


class LinearActivation(nn.Module):
    """
    Applies the linear activation function, i.e. forwarding input directly to output.
    """

    def forward(self, input: Tensor) -> Tensor:
        return input


class LaplaceActivation(nn.Module):
    """
    Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
    https://arxiv.org/abs/2209.10655

    Inspired by squared relu, but with bounded range and gradient for better stability
    """

    def forward(self, input, mu=0.707107, sigma=0.282095):
        input = (input - mu).div(sigma * math.sqrt(2.0))
        return 0.5 * (1.0 + torch.erf(input))


class ReLUSquaredActivation(nn.Module):
    """
    Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
    """

    def forward(self, input):
        relu_applied = nn.functional.relu(input)
        squared = torch.square(relu_applied)
        return squared


class ClassInstantier(OrderedDict):
    def __getitem__(self, key):
        content = super().__getitem__(key)
        cls, kwargs = content if isinstance(content, tuple) else (content, {})
        return cls(**kwargs)


ACT2CLS = {
    "gelu": GELUActivation,
    "gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
    "gelu_fast": FastGELUActivation,
    "gelu_new": NewGELUActivation,
    "gelu_python": (GELUActivation, {"use_gelu_python": True}),
    "gelu_pytorch_tanh": PytorchGELUTanh,
    "gelu_accurate": AccurateGELUActivation,
    "laplace": LaplaceActivation,
    "leaky_relu": nn.LeakyReLU,
    "linear": LinearActivation,
    "mish": MishActivation,
    "quick_gelu": QuickGELUActivation,
    "relu": nn.ReLU,
    "relu2": ReLUSquaredActivation,
    "relu6": nn.ReLU6,
    "sigmoid": nn.Sigmoid,
    "silu": nn.SiLU,
    "swish": nn.SiLU,
    "tanh": nn.Tanh,
}
ACT2FN = ClassInstantier(ACT2CLS)


def get_activation(activation_string):
    if activation_string in ACT2FN:
        return ACT2FN[activation_string]
    else:
        raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")


# For backwards compatibility with: from activations import gelu_python
gelu_python = get_activation("gelu_python")
gelu_new = get_activation("gelu_new")
gelu = get_activation("gelu")
gelu_fast = get_activation("gelu_fast")
quick_gelu = get_activation("quick_gelu")
silu = get_activation("silu")
mish = get_activation("mish")
linear_act = get_activation("linear")