File size: 10,770 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that checks the big table in the file docs/source/en/index.md and potentially updates it.

Use from the root of the repo with:

```bash
python utils/check_inits.py
```

for a check that will error in case of inconsistencies (used by `make repo-consistency`).

To auto-fix issues run:

```bash
python utils/check_inits.py --fix_and_overwrite
```

which is used by `make fix-copies`.
"""
import argparse
import collections
import os
import re
from typing import List

from transformers.utils import direct_transformers_import


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
TRANSFORMERS_PATH = "src/transformers"
PATH_TO_DOCS = "docs/source/en"
REPO_PATH = "."


def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str:
    """
    Find the text in filename between two prompts.

    Args:
        filename (`str`): The file to search into.
        start_prompt (`str`): A string to look for at the start of the content searched.
        end_prompt (`str`): A string that will mark the end of the content to look for.

    Returns:
        `str`: The content between the prompts.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()

    # Find the start prompt.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

    # Now go until the end prompt.
    end_index = start_index
    while not lines[end_index].startswith(end_prompt):
        end_index += 1
    end_index -= 1

    while len(lines[start_index]) <= 1:
        start_index += 1
    while len(lines[end_index]) <= 1:
        end_index -= 1
    end_index += 1
    return "".join(lines[start_index:end_index]), start_index, end_index, lines


# Regexes that match TF/Flax/PT model names. Add here suffixes that are used to identify models, separated by |
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch after the two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")


# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)


def camel_case_split(identifier: str) -> List[str]:
    """
    Split a camel-cased name into words.

    Args:
        identifier (`str`): The camel-cased name to parse.

    Returns:
        `List[str]`: The list of words in the identifier (as seprated by capital letters).

    Example:

    ```py
    >>> camel_case_split("CamelCasedClass")
    ["Camel", "Cased", "Class"]
    ```
    """
    # Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
    matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
    return [m.group(0) for m in matches]


def _center_text(text: str, width: int) -> str:
    """
    Utility that will add spaces on the left and right of a text to make it centered for a given width.

    Args:
        text (`str`): The text to center.
        width (`int`): The desired length of the result.

    Returns:
        `str`: A text of length `width` with the original `text` in the middle.
    """
    text_length = 2 if text == "✅" or text == "❌" else len(text)
    left_indent = (width - text_length) // 2
    right_indent = width - text_length - left_indent
    return " " * left_indent + text + " " * right_indent


SPECIAL_MODEL_NAME_LINK_MAPPING = {
    "Data2VecAudio": "[Data2VecAudio](model_doc/data2vec)",
    "Data2VecText": "[Data2VecText](model_doc/data2vec)",
    "Data2VecVision": "[Data2VecVision](model_doc/data2vec)",
    "DonutSwin": "[DonutSwin](model_doc/donut)",
}

MODEL_NAMES_WITH_SAME_CONFIG = {
    "BARThez": "BART",
    "BARTpho": "BART",
    "BertJapanese": "BERT",
    "BERTweet": "BERT",
    "BORT": "BERT",
    "ByT5": "T5",
    "CPM": "OpenAI GPT-2",
    "DePlot": "Pix2Struct",
    "DialoGPT": "OpenAI GPT-2",
    "DiT": "BEiT",
    "FLAN-T5": "T5",
    "FLAN-UL2": "T5",
    "HerBERT": "BERT",
    "LayoutXLM": "LayoutLMv2",
    "Llama2": "LLaMA",
    "Llama3": "LLaMA",
    "MADLAD-400": "T5",
    "MatCha": "Pix2Struct",
    "mBART-50": "mBART",
    "Megatron-GPT2": "OpenAI GPT-2",
    "mLUKE": "LUKE",
    "MMS": "Wav2Vec2",
    "NLLB": "M2M100",
    "PhoBERT": "BERT",
    "T5v1.1": "T5",
    "TAPEX": "BART",
    "UL2": "T5",
    "Wav2Vec2Phoneme": "Wav2Vec2",
    "XLM-V": "XLM-RoBERTa",
    "XLS-R": "Wav2Vec2",
    "XLSR-Wav2Vec2": "Wav2Vec2",
}
MODEL_NAMES_TO_IGNORE = ["CLIPVisionModel", "SiglipVisionModel", "ChineseCLIPVisionModel"]


def get_model_table_from_auto_modules() -> str:
    """
    Generates an up-to-date model table from the content of the auto modules.
    """
    # Dictionary model names to config.
    config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
    model_name_to_config = {
        name: config_maping_names[code]
        for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
        if code in config_maping_names
    }
    model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()}

    # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
    pt_models = collections.defaultdict(bool)
    tf_models = collections.defaultdict(bool)
    flax_models = collections.defaultdict(bool)

    # Let's lookup through all transformers object (once).
    for attr_name in dir(transformers_module):
        lookup_dict = None
        if _re_tf_models.match(attr_name) is not None:
            lookup_dict = tf_models
            attr_name = _re_tf_models.match(attr_name).groups()[0]
        elif _re_flax_models.match(attr_name) is not None:
            lookup_dict = flax_models
            attr_name = _re_flax_models.match(attr_name).groups()[0]
        elif _re_pt_models.match(attr_name) is not None:
            lookup_dict = pt_models
            attr_name = _re_pt_models.match(attr_name).groups()[0]

        if lookup_dict is not None:
            while len(attr_name) > 0:
                if attr_name in model_name_to_prefix.values():
                    lookup_dict[attr_name] = True
                    break
                # Try again after removing the last word in the name
                attr_name = "".join(camel_case_split(attr_name)[:-1])

    # Let's build that table!
    model_names = list(model_name_to_config.keys()) + list(MODEL_NAMES_WITH_SAME_CONFIG.keys())

    # model name to doc link mapping
    model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING
    model_name_to_link_mapping = {value: f"[{value}](model_doc/{key})" for key, value in model_names_mapping.items()}
    # update mapping with special model names
    model_name_to_link_mapping = {
        k: SPECIAL_MODEL_NAME_LINK_MAPPING[k] if k in SPECIAL_MODEL_NAME_LINK_MAPPING else v
        for k, v in model_name_to_link_mapping.items()
    }

    # MaskFormerSwin and TimmBackbone are backbones and so not meant to be loaded and used on their own. Instead, they define architectures which can be loaded using the AutoBackbone API.
    names_to_exclude = ["MaskFormerSwin", "TimmBackbone", "Speech2Text2"]
    model_names = [name for name in model_names if name not in names_to_exclude]
    model_names.sort(key=str.lower)

    columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"]
    # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).

    widths = [len(c) + 2 for c in columns]
    widths[0] = max([len(doc_link) for doc_link in model_name_to_link_mapping.values()]) + 2

    # Build the table per se
    table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n"
    # Use ":-----:" format to center-aligned table cell texts
    table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n"

    check = {True: "✅", False: "❌"}

    for name in model_names:
        if name in MODEL_NAMES_TO_IGNORE:
            continue
        if name in MODEL_NAMES_WITH_SAME_CONFIG.keys():
            prefix = model_name_to_prefix[MODEL_NAMES_WITH_SAME_CONFIG[name]]
        else:
            prefix = model_name_to_prefix[name]
        line = [
            model_name_to_link_mapping[name],
            check[pt_models[prefix]],
            check[tf_models[prefix]],
            check[flax_models[prefix]],
        ]
        table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n"
    return table


def check_model_table(overwrite=False):
    """
    Check the model table in the index.md is consistent with the state of the lib and potentially fix it.

    Args:
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the table when it's not up to date.
    """
    current_table, start_index, end_index, lines = _find_text_in_file(
        filename=os.path.join(PATH_TO_DOCS, "index.md"),
        start_prompt="<!--This table is updated automatically from the auto modules",
        end_prompt="<!-- End table-->",
    )
    new_table = get_model_table_from_auto_modules()

    if current_table != new_table:
        if overwrite:
            with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
        else:
            raise ValueError(
                "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this."
            )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    check_model_table(args.fix_and_overwrite)