|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Configuration base class and utilities.""" |
|
|
|
|
|
import copy |
|
import json |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import requests |
|
import yaml |
|
from huggingface_hub import model_info |
|
from huggingface_hub.utils import HFValidationError |
|
|
|
from . import __version__ |
|
from .models.auto.modeling_auto import ( |
|
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, |
|
MODEL_FOR_CTC_MAPPING_NAMES, |
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, |
|
MODEL_FOR_MASKED_LM_MAPPING_NAMES, |
|
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, |
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, |
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES, |
|
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, |
|
) |
|
from .training_args import ParallelMode |
|
from .utils import ( |
|
MODEL_CARD_NAME, |
|
cached_file, |
|
is_datasets_available, |
|
is_offline_mode, |
|
is_tf_available, |
|
is_tokenizers_available, |
|
is_torch_available, |
|
logging, |
|
) |
|
|
|
|
|
TASK_MAPPING = { |
|
"text-generation": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, |
|
"image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, |
|
"image-segmentation": MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, |
|
"fill-mask": MODEL_FOR_MASKED_LM_MAPPING_NAMES, |
|
"object-detection": MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, |
|
"question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, |
|
"text2text-generation": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, |
|
"text-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, |
|
"table-question-answering": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, |
|
"token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, |
|
"audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, |
|
"automatic-speech-recognition": {**MODEL_FOR_CTC_MAPPING_NAMES, **MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES}, |
|
"zero-shot-image-classification": MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, |
|
} |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ModelCard: |
|
r""" |
|
Structured Model Card class. Store model card as well as methods for loading/downloading/saving model cards. |
|
|
|
Please read the following paper for details and explanation on the sections: "Model Cards for Model Reporting" by |
|
Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, |
|
Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993 |
|
|
|
Note: A model card can be loaded and saved to disk. |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
warnings.warn( |
|
"The class `ModelCard` is deprecated and will be removed in version 5 of Transformers", FutureWarning |
|
) |
|
|
|
self.model_details = kwargs.pop("model_details", {}) |
|
self.intended_use = kwargs.pop("intended_use", {}) |
|
self.factors = kwargs.pop("factors", {}) |
|
self.metrics = kwargs.pop("metrics", {}) |
|
self.evaluation_data = kwargs.pop("evaluation_data", {}) |
|
self.training_data = kwargs.pop("training_data", {}) |
|
self.quantitative_analyses = kwargs.pop("quantitative_analyses", {}) |
|
self.ethical_considerations = kwargs.pop("ethical_considerations", {}) |
|
self.caveats_and_recommendations = kwargs.pop("caveats_and_recommendations", {}) |
|
|
|
|
|
for key, value in kwargs.items(): |
|
try: |
|
setattr(self, key, value) |
|
except AttributeError as err: |
|
logger.error(f"Can't set {key} with value {value} for {self}") |
|
raise err |
|
|
|
def save_pretrained(self, save_directory_or_file): |
|
"""Save a model card object to the directory or file `save_directory_or_file`.""" |
|
if os.path.isdir(save_directory_or_file): |
|
|
|
output_model_card_file = os.path.join(save_directory_or_file, MODEL_CARD_NAME) |
|
else: |
|
output_model_card_file = save_directory_or_file |
|
|
|
self.to_json_file(output_model_card_file) |
|
logger.info(f"Model card saved in {output_model_card_file}") |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`ModelCard`] from a pre-trained model model card. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path: either: |
|
|
|
- a string, the *model id* of a pretrained model card hosted inside a model repo on huggingface.co. |
|
- a path to a *directory* containing a model card file saved using the [`~ModelCard.save_pretrained`] |
|
method, e.g.: `./my_model_directory/`. |
|
- a path or url to a saved model card JSON *file*, e.g.: `./my_model_directory/modelcard.json`. |
|
|
|
cache_dir: (*optional*) string: |
|
Path to a directory in which a downloaded pre-trained model card should be cached if the standard cache |
|
should not be used. |
|
|
|
kwargs: (*optional*) dict: key/value pairs with which to update the ModelCard object after loading. |
|
|
|
- The values in kwargs of any keys which are model card attributes will be used to override the loaded |
|
values. |
|
- Behavior concerning key/value pairs whose keys are *not* model card attributes is controlled by the |
|
*return_unused_kwargs* keyword parameter. |
|
|
|
proxies: (*optional*) dict, default None: |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. |
|
|
|
return_unused_kwargs: (*optional*) bool: |
|
|
|
- If False, then this function returns just the final model card object. |
|
- If True, then this functions returns a tuple *(model card, unused_kwargs)* where *unused_kwargs* is a |
|
dictionary consisting of the key/value pairs whose keys are not model card attributes: ie the part of |
|
kwargs which has not been used to update *ModelCard* and is otherwise ignored. |
|
|
|
Examples: |
|
|
|
```python |
|
# Download model card from huggingface.co and cache. |
|
modelcard = ModelCard.from_pretrained("google-bert/bert-base-uncased") |
|
# Model card was saved using *save_pretrained('./test/saved_model/')* |
|
modelcard = ModelCard.from_pretrained("./test/saved_model/") |
|
modelcard = ModelCard.from_pretrained("./test/saved_model/modelcard.json") |
|
modelcard = ModelCard.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False) |
|
```""" |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
proxies = kwargs.pop("proxies", None) |
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) |
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
|
|
user_agent = {"file_type": "model_card"} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
resolved_model_card_file = pretrained_model_name_or_path |
|
is_local = True |
|
else: |
|
try: |
|
|
|
resolved_model_card_file = cached_file( |
|
pretrained_model_name_or_path, |
|
filename=MODEL_CARD_NAME, |
|
cache_dir=cache_dir, |
|
proxies=proxies, |
|
user_agent=user_agent, |
|
) |
|
if is_local: |
|
logger.info(f"loading model card file {resolved_model_card_file}") |
|
else: |
|
logger.info(f"loading model card file {MODEL_CARD_NAME} from cache at {resolved_model_card_file}") |
|
|
|
modelcard = cls.from_json_file(resolved_model_card_file) |
|
|
|
except (EnvironmentError, json.JSONDecodeError): |
|
|
|
modelcard = cls() |
|
|
|
|
|
to_remove = [] |
|
for key, value in kwargs.items(): |
|
if hasattr(modelcard, key): |
|
setattr(modelcard, key, value) |
|
to_remove.append(key) |
|
for key in to_remove: |
|
kwargs.pop(key, None) |
|
|
|
logger.info(f"Model card: {modelcard}") |
|
if return_unused_kwargs: |
|
return modelcard, kwargs |
|
else: |
|
return modelcard |
|
|
|
@classmethod |
|
def from_dict(cls, json_object): |
|
"""Constructs a `ModelCard` from a Python dictionary of parameters.""" |
|
return cls(**json_object) |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file): |
|
"""Constructs a `ModelCard` from a json file of parameters.""" |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
dict_obj = json.loads(text) |
|
return cls(**dict_obj) |
|
|
|
def __eq__(self, other): |
|
return self.__dict__ == other.__dict__ |
|
|
|
def __repr__(self): |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self): |
|
"""Serializes this instance to a Python dictionary.""" |
|
output = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self): |
|
"""Serializes this instance to a JSON string.""" |
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path): |
|
"""Save this instance to a json file.""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string()) |
|
|
|
|
|
AUTOGENERATED_TRAINER_COMMENT = """ |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
""" |
|
|
|
AUTOGENERATED_KERAS_COMMENT = """ |
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
""" |
|
|
|
|
|
TASK_TAG_TO_NAME_MAPPING = { |
|
"fill-mask": "Masked Language Modeling", |
|
"image-classification": "Image Classification", |
|
"image-segmentation": "Image Segmentation", |
|
"multiple-choice": "Multiple Choice", |
|
"object-detection": "Object Detection", |
|
"question-answering": "Question Answering", |
|
"summarization": "Summarization", |
|
"table-question-answering": "Table Question Answering", |
|
"text-classification": "Text Classification", |
|
"text-generation": "Causal Language Modeling", |
|
"text2text-generation": "Sequence-to-sequence Language Modeling", |
|
"token-classification": "Token Classification", |
|
"translation": "Translation", |
|
"zero-shot-classification": "Zero Shot Classification", |
|
"automatic-speech-recognition": "Automatic Speech Recognition", |
|
"audio-classification": "Audio Classification", |
|
} |
|
|
|
|
|
METRIC_TAGS = [ |
|
"accuracy", |
|
"bleu", |
|
"f1", |
|
"matthews_correlation", |
|
"pearsonr", |
|
"precision", |
|
"recall", |
|
"rouge", |
|
"sacrebleu", |
|
"spearmanr", |
|
"wer", |
|
] |
|
|
|
|
|
def _listify(obj): |
|
if obj is None: |
|
return [] |
|
elif isinstance(obj, str): |
|
return [obj] |
|
else: |
|
return obj |
|
|
|
|
|
def _insert_values_as_list(metadata, name, values): |
|
if values is None: |
|
return metadata |
|
if isinstance(values, str): |
|
values = [values] |
|
values = [v for v in values if v is not None] |
|
if len(values) == 0: |
|
return metadata |
|
metadata[name] = values |
|
return metadata |
|
|
|
|
|
def infer_metric_tags_from_eval_results(eval_results): |
|
if eval_results is None: |
|
return {} |
|
result = {} |
|
for key in eval_results.keys(): |
|
if key.lower().replace(" ", "_") in METRIC_TAGS: |
|
result[key.lower().replace(" ", "_")] = key |
|
elif key.lower() == "rouge1": |
|
result["rouge"] = key |
|
return result |
|
|
|
|
|
def _insert_value(metadata, name, value): |
|
if value is None: |
|
return metadata |
|
metadata[name] = value |
|
return metadata |
|
|
|
|
|
def is_hf_dataset(dataset): |
|
if not is_datasets_available(): |
|
return False |
|
|
|
from datasets import Dataset, IterableDataset |
|
|
|
return isinstance(dataset, (Dataset, IterableDataset)) |
|
|
|
|
|
def _get_mapping_values(mapping): |
|
result = [] |
|
for v in mapping.values(): |
|
if isinstance(v, (tuple, list)): |
|
result += list(v) |
|
else: |
|
result.append(v) |
|
return result |
|
|
|
|
|
@dataclass |
|
class TrainingSummary: |
|
model_name: str |
|
language: Optional[Union[str, List[str]]] = None |
|
license: Optional[str] = None |
|
tags: Optional[Union[str, List[str]]] = None |
|
finetuned_from: Optional[str] = None |
|
tasks: Optional[Union[str, List[str]]] = None |
|
dataset: Optional[Union[str, List[str]]] = None |
|
dataset_tags: Optional[Union[str, List[str]]] = None |
|
dataset_args: Optional[Union[str, List[str]]] = None |
|
dataset_metadata: Optional[Dict[str, Any]] = None |
|
eval_results: Optional[Dict[str, float]] = None |
|
eval_lines: Optional[List[str]] = None |
|
hyperparameters: Optional[Dict[str, Any]] = None |
|
source: Optional[str] = "trainer" |
|
|
|
def __post_init__(self): |
|
|
|
if ( |
|
self.license is None |
|
and not is_offline_mode() |
|
and self.finetuned_from is not None |
|
and len(self.finetuned_from) > 0 |
|
): |
|
try: |
|
info = model_info(self.finetuned_from) |
|
for tag in info.tags: |
|
if tag.startswith("license:"): |
|
self.license = tag[8:] |
|
except (requests.exceptions.HTTPError, requests.exceptions.ConnectionError, HFValidationError): |
|
pass |
|
|
|
def create_model_index(self, metric_mapping): |
|
model_index = {"name": self.model_name} |
|
|
|
|
|
dataset_names = _listify(self.dataset) |
|
dataset_tags = _listify(self.dataset_tags) |
|
dataset_args = _listify(self.dataset_args) |
|
dataset_metadata = _listify(self.dataset_metadata) |
|
if len(dataset_args) < len(dataset_tags): |
|
dataset_args = dataset_args + [None] * (len(dataset_tags) - len(dataset_args)) |
|
dataset_mapping = dict(zip(dataset_tags, dataset_names)) |
|
dataset_arg_mapping = dict(zip(dataset_tags, dataset_args)) |
|
dataset_metadata_mapping = dict(zip(dataset_tags, dataset_metadata)) |
|
|
|
task_mapping = { |
|
task: TASK_TAG_TO_NAME_MAPPING[task] for task in _listify(self.tasks) if task in TASK_TAG_TO_NAME_MAPPING |
|
} |
|
|
|
model_index["results"] = [] |
|
|
|
if len(task_mapping) == 0 and len(dataset_mapping) == 0: |
|
return [model_index] |
|
if len(task_mapping) == 0: |
|
task_mapping = {None: None} |
|
if len(dataset_mapping) == 0: |
|
dataset_mapping = {None: None} |
|
|
|
|
|
all_possibilities = [(task_tag, ds_tag) for task_tag in task_mapping for ds_tag in dataset_mapping] |
|
for task_tag, ds_tag in all_possibilities: |
|
result = {} |
|
if task_tag is not None: |
|
result["task"] = {"name": task_mapping[task_tag], "type": task_tag} |
|
|
|
if ds_tag is not None: |
|
metadata = dataset_metadata_mapping.get(ds_tag, {}) |
|
result["dataset"] = { |
|
"name": dataset_mapping[ds_tag], |
|
"type": ds_tag, |
|
**metadata, |
|
} |
|
if dataset_arg_mapping[ds_tag] is not None: |
|
result["dataset"]["args"] = dataset_arg_mapping[ds_tag] |
|
|
|
if len(metric_mapping) > 0: |
|
result["metrics"] = [] |
|
for metric_tag, metric_name in metric_mapping.items(): |
|
result["metrics"].append( |
|
{ |
|
"name": metric_name, |
|
"type": metric_tag, |
|
"value": self.eval_results[metric_name], |
|
} |
|
) |
|
|
|
|
|
if "task" in result and "dataset" in result and "metrics" in result: |
|
model_index["results"].append(result) |
|
else: |
|
logger.info(f"Dropping the following result as it does not have all the necessary fields:\n{result}") |
|
|
|
return [model_index] |
|
|
|
def create_metadata(self): |
|
metric_mapping = infer_metric_tags_from_eval_results(self.eval_results) |
|
|
|
metadata = {} |
|
metadata = _insert_values_as_list(metadata, "language", self.language) |
|
metadata = _insert_value(metadata, "license", self.license) |
|
if self.finetuned_from is not None and isinstance(self.finetuned_from, str) and len(self.finetuned_from) > 0: |
|
metadata = _insert_value(metadata, "base_model", self.finetuned_from) |
|
metadata = _insert_values_as_list(metadata, "tags", self.tags) |
|
metadata = _insert_values_as_list(metadata, "datasets", self.dataset_tags) |
|
metadata = _insert_values_as_list(metadata, "metrics", list(metric_mapping.keys())) |
|
metadata["model-index"] = self.create_model_index(metric_mapping) |
|
|
|
return metadata |
|
|
|
def to_model_card(self): |
|
model_card = "" |
|
|
|
metadata = yaml.dump(self.create_metadata(), sort_keys=False) |
|
if len(metadata) > 0: |
|
model_card = f"---\n{metadata}---\n" |
|
|
|
|
|
if self.source == "trainer": |
|
model_card += AUTOGENERATED_TRAINER_COMMENT |
|
else: |
|
model_card += AUTOGENERATED_KERAS_COMMENT |
|
|
|
model_card += f"\n# {self.model_name}\n\n" |
|
|
|
if self.finetuned_from is None: |
|
model_card += "This model was trained from scratch on " |
|
else: |
|
model_card += ( |
|
"This model is a fine-tuned version of" |
|
f" [{self.finetuned_from}](https://huggingface.co/{self.finetuned_from}) on " |
|
) |
|
|
|
if self.dataset is None: |
|
model_card += "an unknown dataset." |
|
else: |
|
if isinstance(self.dataset, str): |
|
model_card += f"the {self.dataset} dataset." |
|
elif isinstance(self.dataset, (tuple, list)) and len(self.dataset) == 1: |
|
model_card += f"the {self.dataset[0]} dataset." |
|
else: |
|
model_card += ( |
|
", ".join([f"the {ds}" for ds in self.dataset[:-1]]) + f" and the {self.dataset[-1]} datasets." |
|
) |
|
|
|
if self.eval_results is not None: |
|
model_card += "\nIt achieves the following results on the evaluation set:\n" |
|
model_card += "\n".join([f"- {name}: {_maybe_round(value)}" for name, value in self.eval_results.items()]) |
|
model_card += "\n" |
|
|
|
model_card += "\n## Model description\n\nMore information needed\n" |
|
model_card += "\n## Intended uses & limitations\n\nMore information needed\n" |
|
model_card += "\n## Training and evaluation data\n\nMore information needed\n" |
|
|
|
model_card += "\n## Training procedure\n" |
|
model_card += "\n### Training hyperparameters\n" |
|
if self.hyperparameters is not None: |
|
model_card += "\nThe following hyperparameters were used during training:\n" |
|
model_card += "\n".join([f"- {name}: {value}" for name, value in self.hyperparameters.items()]) |
|
model_card += "\n" |
|
else: |
|
model_card += "\nMore information needed\n" |
|
|
|
if self.eval_lines is not None: |
|
model_card += "\n### Training results\n\n" |
|
model_card += make_markdown_table(self.eval_lines) |
|
model_card += "\n" |
|
|
|
model_card += "\n### Framework versions\n\n" |
|
model_card += f"- Transformers {__version__}\n" |
|
|
|
if self.source == "trainer" and is_torch_available(): |
|
import torch |
|
|
|
model_card += f"- Pytorch {torch.__version__}\n" |
|
elif self.source == "keras" and is_tf_available(): |
|
import tensorflow as tf |
|
|
|
model_card += f"- TensorFlow {tf.__version__}\n" |
|
if is_datasets_available(): |
|
import datasets |
|
|
|
model_card += f"- Datasets {datasets.__version__}\n" |
|
if is_tokenizers_available(): |
|
import tokenizers |
|
|
|
model_card += f"- Tokenizers {tokenizers.__version__}\n" |
|
|
|
return model_card |
|
|
|
@classmethod |
|
def from_trainer( |
|
cls, |
|
trainer, |
|
language=None, |
|
license=None, |
|
tags=None, |
|
model_name=None, |
|
finetuned_from=None, |
|
tasks=None, |
|
dataset_tags=None, |
|
dataset_metadata=None, |
|
dataset=None, |
|
dataset_args=None, |
|
): |
|
|
|
one_dataset = trainer.eval_dataset if trainer.eval_dataset is not None else trainer.train_dataset |
|
if is_hf_dataset(one_dataset) and (dataset_tags is None or dataset_args is None or dataset_metadata is None): |
|
default_tag = one_dataset.builder_name |
|
|
|
if default_tag not in ["csv", "json", "pandas", "parquet", "text"]: |
|
if dataset_metadata is None: |
|
dataset_metadata = [{"config": one_dataset.config_name, "split": str(one_dataset.split)}] |
|
if dataset_tags is None: |
|
dataset_tags = [default_tag] |
|
if dataset_args is None: |
|
dataset_args = [one_dataset.config_name] |
|
|
|
if dataset is None and dataset_tags is not None: |
|
dataset = dataset_tags |
|
|
|
|
|
if ( |
|
finetuned_from is None |
|
and hasattr(trainer.model.config, "_name_or_path") |
|
and not os.path.isdir(trainer.model.config._name_or_path) |
|
): |
|
finetuned_from = trainer.model.config._name_or_path |
|
|
|
|
|
if tasks is None: |
|
model_class_name = trainer.model.__class__.__name__ |
|
for task, mapping in TASK_MAPPING.items(): |
|
if model_class_name in _get_mapping_values(mapping): |
|
tasks = task |
|
|
|
if model_name is None: |
|
model_name = Path(trainer.args.output_dir).name |
|
if len(model_name) == 0: |
|
model_name = finetuned_from |
|
|
|
|
|
if tags is None: |
|
tags = ["generated_from_trainer"] |
|
elif isinstance(tags, str) and tags != "generated_from_trainer": |
|
tags = [tags, "generated_from_trainer"] |
|
elif "generated_from_trainer" not in tags: |
|
tags.append("generated_from_trainer") |
|
|
|
_, eval_lines, eval_results = parse_log_history(trainer.state.log_history) |
|
hyperparameters = extract_hyperparameters_from_trainer(trainer) |
|
|
|
return cls( |
|
language=language, |
|
license=license, |
|
tags=tags, |
|
model_name=model_name, |
|
finetuned_from=finetuned_from, |
|
tasks=tasks, |
|
dataset=dataset, |
|
dataset_tags=dataset_tags, |
|
dataset_args=dataset_args, |
|
dataset_metadata=dataset_metadata, |
|
eval_results=eval_results, |
|
eval_lines=eval_lines, |
|
hyperparameters=hyperparameters, |
|
) |
|
|
|
@classmethod |
|
def from_keras( |
|
cls, |
|
model, |
|
model_name, |
|
keras_history=None, |
|
language=None, |
|
license=None, |
|
tags=None, |
|
finetuned_from=None, |
|
tasks=None, |
|
dataset_tags=None, |
|
dataset=None, |
|
dataset_args=None, |
|
): |
|
|
|
if dataset is not None: |
|
if is_hf_dataset(dataset) and (dataset_tags is None or dataset_args is None): |
|
default_tag = dataset.builder_name |
|
|
|
if default_tag not in ["csv", "json", "pandas", "parquet", "text"]: |
|
if dataset_tags is None: |
|
dataset_tags = [default_tag] |
|
if dataset_args is None: |
|
dataset_args = [dataset.config_name] |
|
|
|
if dataset is None and dataset_tags is not None: |
|
dataset = dataset_tags |
|
|
|
|
|
if ( |
|
finetuned_from is None |
|
and hasattr(model.config, "_name_or_path") |
|
and not os.path.isdir(model.config._name_or_path) |
|
): |
|
finetuned_from = model.config._name_or_path |
|
|
|
|
|
if tasks is None: |
|
model_class_name = model.__class__.__name__ |
|
for task, mapping in TASK_MAPPING.items(): |
|
if model_class_name in _get_mapping_values(mapping): |
|
tasks = task |
|
|
|
|
|
if tags is None: |
|
tags = ["generated_from_keras_callback"] |
|
elif isinstance(tags, str) and tags != "generated_from_keras_callback": |
|
tags = [tags, "generated_from_keras_callback"] |
|
elif "generated_from_keras_callback" not in tags: |
|
tags.append("generated_from_keras_callback") |
|
|
|
if keras_history is not None: |
|
_, eval_lines, eval_results = parse_keras_history(keras_history) |
|
else: |
|
eval_lines = [] |
|
eval_results = {} |
|
hyperparameters = extract_hyperparameters_from_keras(model) |
|
|
|
return cls( |
|
language=language, |
|
license=license, |
|
tags=tags, |
|
model_name=model_name, |
|
finetuned_from=finetuned_from, |
|
tasks=tasks, |
|
dataset_tags=dataset_tags, |
|
dataset=dataset, |
|
dataset_args=dataset_args, |
|
eval_results=eval_results, |
|
eval_lines=eval_lines, |
|
hyperparameters=hyperparameters, |
|
source="keras", |
|
) |
|
|
|
|
|
def parse_keras_history(logs): |
|
""" |
|
Parse the `logs` of either a `keras.History` object returned by `model.fit()` or an accumulated logs `dict` |
|
passed to the `PushToHubCallback`. Returns lines and logs compatible with those returned by `parse_log_history`. |
|
""" |
|
if hasattr(logs, "history"): |
|
|
|
if not hasattr(logs, "epoch"): |
|
|
|
return None, [], {} |
|
logs.history["epoch"] = logs.epoch |
|
logs = logs.history |
|
else: |
|
|
|
logs = {log_key: [single_dict[log_key] for single_dict in logs] for log_key in logs[0]} |
|
|
|
lines = [] |
|
for i in range(len(logs["epoch"])): |
|
epoch_dict = {log_key: log_value_list[i] for log_key, log_value_list in logs.items()} |
|
values = {} |
|
for k, v in epoch_dict.items(): |
|
if k.startswith("val_"): |
|
k = "validation_" + k[4:] |
|
elif k != "epoch": |
|
k = "train_" + k |
|
splits = k.split("_") |
|
name = " ".join([part.capitalize() for part in splits]) |
|
values[name] = v |
|
lines.append(values) |
|
|
|
eval_results = lines[-1] |
|
|
|
return logs, lines, eval_results |
|
|
|
|
|
def parse_log_history(log_history): |
|
""" |
|
Parse the `log_history` of a Trainer to get the intermediate and final evaluation results. |
|
""" |
|
idx = 0 |
|
while idx < len(log_history) and "train_runtime" not in log_history[idx]: |
|
idx += 1 |
|
|
|
|
|
if idx == len(log_history): |
|
idx -= 1 |
|
while idx >= 0 and "eval_loss" not in log_history[idx]: |
|
idx -= 1 |
|
|
|
if idx >= 0: |
|
return None, None, log_history[idx] |
|
else: |
|
return None, None, None |
|
|
|
|
|
train_log = log_history[idx] |
|
lines = [] |
|
training_loss = "No log" |
|
for i in range(idx): |
|
if "loss" in log_history[i]: |
|
training_loss = log_history[i]["loss"] |
|
if "eval_loss" in log_history[i]: |
|
metrics = log_history[i].copy() |
|
_ = metrics.pop("total_flos", None) |
|
epoch = metrics.pop("epoch", None) |
|
step = metrics.pop("step", None) |
|
_ = metrics.pop("eval_runtime", None) |
|
_ = metrics.pop("eval_samples_per_second", None) |
|
_ = metrics.pop("eval_steps_per_second", None) |
|
_ = metrics.pop("eval_jit_compilation_time", None) |
|
values = {"Training Loss": training_loss, "Epoch": epoch, "Step": step} |
|
for k, v in metrics.items(): |
|
if k == "eval_loss": |
|
values["Validation Loss"] = v |
|
else: |
|
splits = k.split("_") |
|
name = " ".join([part.capitalize() for part in splits[1:]]) |
|
values[name] = v |
|
lines.append(values) |
|
|
|
idx = len(log_history) - 1 |
|
while idx >= 0 and "eval_loss" not in log_history[idx]: |
|
idx -= 1 |
|
|
|
if idx > 0: |
|
eval_results = {} |
|
for key, value in log_history[idx].items(): |
|
if key.startswith("eval_"): |
|
key = key[5:] |
|
if key not in ["runtime", "samples_per_second", "steps_per_second", "epoch", "step"]: |
|
camel_cased_key = " ".join([part.capitalize() for part in key.split("_")]) |
|
eval_results[camel_cased_key] = value |
|
return train_log, lines, eval_results |
|
else: |
|
return train_log, lines, None |
|
|
|
|
|
def extract_hyperparameters_from_keras(model): |
|
from .modeling_tf_utils import keras |
|
|
|
hyperparameters = {} |
|
if hasattr(model, "optimizer") and model.optimizer is not None: |
|
hyperparameters["optimizer"] = model.optimizer.get_config() |
|
else: |
|
hyperparameters["optimizer"] = None |
|
hyperparameters["training_precision"] = keras.mixed_precision.global_policy().name |
|
|
|
return hyperparameters |
|
|
|
|
|
def _maybe_round(v, decimals=4): |
|
if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals: |
|
return f"{v:.{decimals}f}" |
|
return str(v) |
|
|
|
|
|
def _regular_table_line(values, col_widths): |
|
values_with_space = [f"| {v}" + " " * (w - len(v) + 1) for v, w in zip(values, col_widths)] |
|
return "".join(values_with_space) + "|\n" |
|
|
|
|
|
def _second_table_line(col_widths): |
|
values = ["|:" + "-" * w + ":" for w in col_widths] |
|
return "".join(values) + "|\n" |
|
|
|
|
|
def make_markdown_table(lines): |
|
""" |
|
Create a nice Markdown table from the results in `lines`. |
|
""" |
|
if lines is None or len(lines) == 0: |
|
return "" |
|
col_widths = {key: len(str(key)) for key in lines[0].keys()} |
|
for line in lines: |
|
for key, value in line.items(): |
|
if col_widths[key] < len(_maybe_round(value)): |
|
col_widths[key] = len(_maybe_round(value)) |
|
|
|
table = _regular_table_line(list(lines[0].keys()), list(col_widths.values())) |
|
table += _second_table_line(list(col_widths.values())) |
|
for line in lines: |
|
table += _regular_table_line([_maybe_round(v) for v in line.values()], list(col_widths.values())) |
|
return table |
|
|
|
|
|
_TRAINING_ARGS_KEYS = [ |
|
"learning_rate", |
|
"train_batch_size", |
|
"eval_batch_size", |
|
"seed", |
|
] |
|
|
|
|
|
def extract_hyperparameters_from_trainer(trainer): |
|
hyperparameters = {k: getattr(trainer.args, k) for k in _TRAINING_ARGS_KEYS} |
|
|
|
if trainer.args.parallel_mode not in [ParallelMode.NOT_PARALLEL, ParallelMode.NOT_DISTRIBUTED]: |
|
hyperparameters["distributed_type"] = ( |
|
"multi-GPU" if trainer.args.parallel_mode == ParallelMode.DISTRIBUTED else trainer.args.parallel_mode.value |
|
) |
|
if trainer.args.world_size > 1: |
|
hyperparameters["num_devices"] = trainer.args.world_size |
|
if trainer.args.gradient_accumulation_steps > 1: |
|
hyperparameters["gradient_accumulation_steps"] = trainer.args.gradient_accumulation_steps |
|
|
|
total_train_batch_size = ( |
|
trainer.args.train_batch_size * trainer.args.world_size * trainer.args.gradient_accumulation_steps |
|
) |
|
if total_train_batch_size != hyperparameters["train_batch_size"]: |
|
hyperparameters["total_train_batch_size"] = total_train_batch_size |
|
total_eval_batch_size = trainer.args.eval_batch_size * trainer.args.world_size |
|
if total_eval_batch_size != hyperparameters["eval_batch_size"]: |
|
hyperparameters["total_eval_batch_size"] = total_eval_batch_size |
|
|
|
if trainer.args.adafactor: |
|
hyperparameters["optimizer"] = "Adafactor" |
|
else: |
|
hyperparameters["optimizer"] = ( |
|
f"Adam with betas=({trainer.args.adam_beta1},{trainer.args.adam_beta2}) and" |
|
f" epsilon={trainer.args.adam_epsilon}" |
|
) |
|
|
|
hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value |
|
if trainer.args.warmup_ratio != 0.0: |
|
hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio |
|
if trainer.args.warmup_steps != 0.0: |
|
hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps |
|
if trainer.args.max_steps != -1: |
|
hyperparameters["training_steps"] = trainer.args.max_steps |
|
else: |
|
hyperparameters["num_epochs"] = trainer.args.num_train_epochs |
|
|
|
if trainer.args.fp16: |
|
if trainer.use_apex: |
|
hyperparameters["mixed_precision_training"] = f"Apex, opt level {trainer.args.fp16_opt_level}" |
|
else: |
|
hyperparameters["mixed_precision_training"] = "Native AMP" |
|
|
|
if trainer.args.label_smoothing_factor != 0.0: |
|
hyperparameters["label_smoothing_factor"] = trainer.args.label_smoothing_factor |
|
|
|
return hyperparameters |
|
|