|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import base64 |
|
import importlib |
|
import inspect |
|
import io |
|
import json |
|
import os |
|
import tempfile |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from huggingface_hub import create_repo, hf_hub_download, metadata_update, upload_folder |
|
from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session |
|
|
|
from ..dynamic_module_utils import custom_object_save, get_class_from_dynamic_module, get_imports |
|
from ..image_utils import is_pil_image |
|
from ..models.auto import AutoProcessor |
|
from ..utils import ( |
|
CONFIG_NAME, |
|
cached_file, |
|
is_accelerate_available, |
|
is_torch_available, |
|
is_vision_available, |
|
logging, |
|
) |
|
from .agent_types import handle_agent_inputs, handle_agent_outputs |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_accelerate_available(): |
|
from accelerate import PartialState |
|
from accelerate.utils import send_to_device |
|
|
|
|
|
TOOL_CONFIG_FILE = "tool_config.json" |
|
|
|
|
|
def get_repo_type(repo_id, repo_type=None, **hub_kwargs): |
|
if repo_type is not None: |
|
return repo_type |
|
try: |
|
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs) |
|
return "space" |
|
except RepositoryNotFoundError: |
|
try: |
|
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs) |
|
return "model" |
|
except RepositoryNotFoundError: |
|
raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.") |
|
except Exception: |
|
return "model" |
|
except Exception: |
|
return "space" |
|
|
|
|
|
|
|
APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo |
|
from {module_name} import {class_name} |
|
|
|
launch_gradio_demo({class_name}) |
|
""" |
|
|
|
|
|
class Tool: |
|
""" |
|
A base class for the functions used by the agent. Subclass this and implement the `__call__` method as well as the |
|
following class attributes: |
|
|
|
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it |
|
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and |
|
returns the text contained in the file'. |
|
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance |
|
`"text-classifier"` or `"image_generator"`. |
|
- **inputs** (`List[str]`) -- The list of modalities expected for the inputs (in the same order as in the call). |
|
Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` or to make a |
|
nice space from your tool. |
|
- **outputs** (`List[str]`) -- The list of modalities returned but the tool (in the same order as the return of the |
|
call method). Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` |
|
or to make a nice space from your tool. |
|
|
|
You can also override the method [`~Tool.setup`] if your tool as an expensive operation to perform before being |
|
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at |
|
instantiation. |
|
""" |
|
|
|
description: str = "This is a tool that ..." |
|
name: str = "" |
|
|
|
inputs: List[str] |
|
outputs: List[str] |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.is_initialized = False |
|
|
|
def __call__(self, *args, **kwargs): |
|
return NotImplemented("Write this method in your subclass of `Tool`.") |
|
|
|
def setup(self): |
|
""" |
|
Overwrite this method here for any operation that is expensive and needs to be executed before you start using |
|
your tool. Such as loading a big model. |
|
""" |
|
self.is_initialized = True |
|
|
|
def save(self, output_dir): |
|
""" |
|
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your |
|
tool in `output_dir` as well as autogenerate: |
|
|
|
- a config file named `tool_config.json` |
|
- an `app.py` file so that your tool can be converted to a space |
|
- a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its |
|
code) |
|
|
|
You should only use this method to save tools that are defined in a separate module (not `__main__`). |
|
|
|
Args: |
|
output_dir (`str`): The folder in which you want to save your tool. |
|
""" |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
if self.__module__ == "__main__": |
|
raise ValueError( |
|
f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You " |
|
"have to put this code in a separate module so we can include it in the saved folder." |
|
) |
|
module_files = custom_object_save(self, output_dir) |
|
|
|
module_name = self.__class__.__module__ |
|
last_module = module_name.split(".")[-1] |
|
full_name = f"{last_module}.{self.__class__.__name__}" |
|
|
|
|
|
config_file = os.path.join(output_dir, "tool_config.json") |
|
if os.path.isfile(config_file): |
|
with open(config_file, "r", encoding="utf-8") as f: |
|
tool_config = json.load(f) |
|
else: |
|
tool_config = {} |
|
|
|
tool_config = {"tool_class": full_name, "description": self.description, "name": self.name} |
|
with open(config_file, "w", encoding="utf-8") as f: |
|
f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n") |
|
|
|
|
|
app_file = os.path.join(output_dir, "app.py") |
|
with open(app_file, "w", encoding="utf-8") as f: |
|
f.write(APP_FILE_TEMPLATE.format(module_name=last_module, class_name=self.__class__.__name__)) |
|
|
|
|
|
requirements_file = os.path.join(output_dir, "requirements.txt") |
|
imports = [] |
|
for module in module_files: |
|
imports.extend(get_imports(module)) |
|
imports = list(set(imports)) |
|
with open(requirements_file, "w", encoding="utf-8") as f: |
|
f.write("\n".join(imports) + "\n") |
|
|
|
@classmethod |
|
def from_hub( |
|
cls, |
|
repo_id: str, |
|
model_repo_id: Optional[str] = None, |
|
token: Optional[str] = None, |
|
remote: bool = False, |
|
**kwargs, |
|
): |
|
""" |
|
Loads a tool defined on the Hub. |
|
|
|
<Tip warning={true}> |
|
|
|
Loading a tool from the Hub means that you'll download the tool and execute it locally. |
|
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when |
|
installing a package using pip/npm/apt. |
|
|
|
</Tip> |
|
|
|
Args: |
|
repo_id (`str`): |
|
The name of the repo on the Hub where your tool is defined. |
|
model_repo_id (`str`, *optional*): |
|
If your tool uses a model and you want to use a different model than the default, you can pass a second |
|
repo ID or an endpoint url to this argument. |
|
token (`str`, *optional*): |
|
The token to identify you on hf.co. If unset, will use the token generated when running |
|
`huggingface-cli login` (stored in `~/.huggingface`). |
|
remote (`bool`, *optional*, defaults to `False`): |
|
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint. |
|
kwargs (additional keyword arguments, *optional*): |
|
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as |
|
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the |
|
others will be passed along to its init. |
|
""" |
|
if remote and model_repo_id is None: |
|
endpoints = get_default_endpoints() |
|
if repo_id not in endpoints: |
|
raise ValueError( |
|
f"Could not infer a default endpoint for {repo_id}, you need to pass one using the " |
|
"`model_repo_id` argument." |
|
) |
|
model_repo_id = endpoints[repo_id] |
|
hub_kwargs_names = [ |
|
"cache_dir", |
|
"force_download", |
|
"resume_download", |
|
"proxies", |
|
"revision", |
|
"repo_type", |
|
"subfolder", |
|
"local_files_only", |
|
] |
|
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names} |
|
|
|
|
|
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs) |
|
resolved_config_file = cached_file( |
|
repo_id, |
|
TOOL_CONFIG_FILE, |
|
token=token, |
|
**hub_kwargs, |
|
_raise_exceptions_for_gated_repo=False, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
) |
|
is_tool_config = resolved_config_file is not None |
|
if resolved_config_file is None: |
|
resolved_config_file = cached_file( |
|
repo_id, |
|
CONFIG_NAME, |
|
token=token, |
|
**hub_kwargs, |
|
_raise_exceptions_for_gated_repo=False, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
) |
|
if resolved_config_file is None: |
|
raise EnvironmentError( |
|
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`." |
|
) |
|
|
|
with open(resolved_config_file, encoding="utf-8") as reader: |
|
config = json.load(reader) |
|
|
|
if not is_tool_config: |
|
if "custom_tool" not in config: |
|
raise EnvironmentError( |
|
f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`." |
|
) |
|
custom_tool = config["custom_tool"] |
|
else: |
|
custom_tool = config |
|
|
|
tool_class = custom_tool["tool_class"] |
|
tool_class = get_class_from_dynamic_module(tool_class, repo_id, token=token, **hub_kwargs) |
|
|
|
if len(tool_class.name) == 0: |
|
tool_class.name = custom_tool["name"] |
|
if tool_class.name != custom_tool["name"]: |
|
logger.warning( |
|
f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool " |
|
"configuration name." |
|
) |
|
tool_class.name = custom_tool["name"] |
|
|
|
if len(tool_class.description) == 0: |
|
tool_class.description = custom_tool["description"] |
|
if tool_class.description != custom_tool["description"]: |
|
logger.warning( |
|
f"{tool_class.__name__} implements a different description in its configuration and class. Using the " |
|
"tool configuration description." |
|
) |
|
tool_class.description = custom_tool["description"] |
|
|
|
if remote: |
|
return RemoteTool(model_repo_id, token=token, tool_class=tool_class) |
|
return tool_class(model_repo_id, token=token, **kwargs) |
|
|
|
def push_to_hub( |
|
self, |
|
repo_id: str, |
|
commit_message: str = "Upload tool", |
|
private: Optional[bool] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
create_pr: bool = False, |
|
) -> str: |
|
""" |
|
Upload the tool to the Hub. |
|
|
|
Parameters: |
|
repo_id (`str`): |
|
The name of the repository you want to push your tool to. It should contain your organization name when |
|
pushing to a given organization. |
|
commit_message (`str`, *optional*, defaults to `"Upload tool"`): |
|
Message to commit while pushing. |
|
private (`bool`, *optional*): |
|
Whether or not the repository created should be private. |
|
token (`bool` or `str`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
create_pr (`bool`, *optional*, defaults to `False`): |
|
Whether or not to create a PR with the uploaded files or directly commit. |
|
""" |
|
repo_url = create_repo( |
|
repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="space", space_sdk="gradio" |
|
) |
|
repo_id = repo_url.repo_id |
|
metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space") |
|
|
|
with tempfile.TemporaryDirectory() as work_dir: |
|
|
|
self.save(work_dir) |
|
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}") |
|
return upload_folder( |
|
repo_id=repo_id, |
|
commit_message=commit_message, |
|
folder_path=work_dir, |
|
token=token, |
|
create_pr=create_pr, |
|
repo_type="space", |
|
) |
|
|
|
@staticmethod |
|
def from_gradio(gradio_tool): |
|
""" |
|
Creates a [`Tool`] from a gradio tool. |
|
""" |
|
|
|
class GradioToolWrapper(Tool): |
|
def __init__(self, _gradio_tool): |
|
super().__init__() |
|
self.name = _gradio_tool.name |
|
self.description = _gradio_tool.description |
|
|
|
GradioToolWrapper.__call__ = gradio_tool.run |
|
return GradioToolWrapper(gradio_tool) |
|
|
|
|
|
class RemoteTool(Tool): |
|
""" |
|
A [`Tool`] that will make requests to an inference endpoint. |
|
|
|
Args: |
|
endpoint_url (`str`, *optional*): |
|
The url of the endpoint to use. |
|
token (`str`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when |
|
running `huggingface-cli login` (stored in `~/.huggingface`). |
|
tool_class (`type`, *optional*): |
|
The corresponding `tool_class` if this is a remote version of an existing tool. Will help determine when |
|
the output should be converted to another type (like images). |
|
""" |
|
|
|
def __init__(self, endpoint_url=None, token=None, tool_class=None): |
|
self.endpoint_url = endpoint_url |
|
self.client = EndpointClient(endpoint_url, token=token) |
|
self.tool_class = tool_class |
|
|
|
def prepare_inputs(self, *args, **kwargs): |
|
""" |
|
Prepare the inputs received for the HTTP client sending data to the endpoint. Positional arguments will be |
|
matched with the signature of the `tool_class` if it was provided at instantation. Images will be encoded into |
|
bytes. |
|
|
|
You can override this method in your custom class of [`RemoteTool`]. |
|
""" |
|
inputs = kwargs.copy() |
|
if len(args) > 0: |
|
if self.tool_class is not None: |
|
|
|
if issubclass(self.tool_class, PipelineTool): |
|
call_method = self.tool_class.encode |
|
else: |
|
call_method = self.tool_class.__call__ |
|
signature = inspect.signature(call_method).parameters |
|
parameters = [ |
|
k |
|
for k, p in signature.items() |
|
if p.kind not in [inspect._ParameterKind.VAR_POSITIONAL, inspect._ParameterKind.VAR_KEYWORD] |
|
] |
|
if parameters[0] == "self": |
|
parameters = parameters[1:] |
|
if len(args) > len(parameters): |
|
raise ValueError( |
|
f"{self.tool_class} only accepts {len(parameters)} arguments but {len(args)} were given." |
|
) |
|
for arg, name in zip(args, parameters): |
|
inputs[name] = arg |
|
elif len(args) > 1: |
|
raise ValueError("A `RemoteTool` can only accept one positional input.") |
|
elif len(args) == 1: |
|
if is_pil_image(args[0]): |
|
return {"inputs": self.client.encode_image(args[0])} |
|
return {"inputs": args[0]} |
|
|
|
for key, value in inputs.items(): |
|
if is_pil_image(value): |
|
inputs[key] = self.client.encode_image(value) |
|
|
|
return {"inputs": inputs} |
|
|
|
def extract_outputs(self, outputs): |
|
""" |
|
You can override this method in your custom class of [`RemoteTool`] to apply some custom post-processing of the |
|
outputs of the endpoint. |
|
""" |
|
return outputs |
|
|
|
def __call__(self, *args, **kwargs): |
|
args, kwargs = handle_agent_inputs(*args, **kwargs) |
|
|
|
output_image = self.tool_class is not None and self.tool_class.outputs == ["image"] |
|
inputs = self.prepare_inputs(*args, **kwargs) |
|
if isinstance(inputs, dict): |
|
outputs = self.client(**inputs, output_image=output_image) |
|
else: |
|
outputs = self.client(inputs, output_image=output_image) |
|
if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list): |
|
outputs = outputs[0] |
|
|
|
outputs = handle_agent_outputs(outputs, self.tool_class.outputs if self.tool_class is not None else None) |
|
|
|
return self.extract_outputs(outputs) |
|
|
|
|
|
class PipelineTool(Tool): |
|
""" |
|
A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will |
|
need to specify: |
|
|
|
- **model_class** (`type`) -- The class to use to load the model in this tool. |
|
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one. |
|
- **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the |
|
pre-processor |
|
- **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the |
|
post-processor (when different from the pre-processor). |
|
|
|
Args: |
|
model (`str` or [`PreTrainedModel`], *optional*): |
|
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the |
|
value of the class attribute `default_checkpoint`. |
|
pre_processor (`str` or `Any`, *optional*): |
|
The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a |
|
tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if |
|
unset. |
|
post_processor (`str` or `Any`, *optional*): |
|
The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a |
|
tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if |
|
unset. |
|
device (`int`, `str` or `torch.device`, *optional*): |
|
The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the |
|
CPU otherwise. |
|
device_map (`str` or `dict`, *optional*): |
|
If passed along, will be used to instantiate the model. |
|
model_kwargs (`dict`, *optional*): |
|
Any keyword argument to send to the model instantiation. |
|
token (`str`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when |
|
running `huggingface-cli login` (stored in `~/.huggingface`). |
|
hub_kwargs (additional keyword arguments, *optional*): |
|
Any additional keyword argument to send to the methods that will load the data from the Hub. |
|
""" |
|
|
|
pre_processor_class = AutoProcessor |
|
model_class = None |
|
post_processor_class = AutoProcessor |
|
default_checkpoint = None |
|
|
|
def __init__( |
|
self, |
|
model=None, |
|
pre_processor=None, |
|
post_processor=None, |
|
device=None, |
|
device_map=None, |
|
model_kwargs=None, |
|
token=None, |
|
**hub_kwargs, |
|
): |
|
if not is_torch_available(): |
|
raise ImportError("Please install torch in order to use this tool.") |
|
|
|
if not is_accelerate_available(): |
|
raise ImportError("Please install accelerate in order to use this tool.") |
|
|
|
if model is None: |
|
if self.default_checkpoint is None: |
|
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.") |
|
model = self.default_checkpoint |
|
if pre_processor is None: |
|
pre_processor = model |
|
|
|
self.model = model |
|
self.pre_processor = pre_processor |
|
self.post_processor = post_processor |
|
self.device = device |
|
self.device_map = device_map |
|
self.model_kwargs = {} if model_kwargs is None else model_kwargs |
|
if device_map is not None: |
|
self.model_kwargs["device_map"] = device_map |
|
self.hub_kwargs = hub_kwargs |
|
self.hub_kwargs["token"] = token |
|
|
|
super().__init__() |
|
|
|
def setup(self): |
|
""" |
|
Instantiates the `pre_processor`, `model` and `post_processor` if necessary. |
|
""" |
|
if isinstance(self.pre_processor, str): |
|
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs) |
|
|
|
if isinstance(self.model, str): |
|
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs) |
|
|
|
if self.post_processor is None: |
|
self.post_processor = self.pre_processor |
|
elif isinstance(self.post_processor, str): |
|
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs) |
|
|
|
if self.device is None: |
|
if self.device_map is not None: |
|
self.device = list(self.model.hf_device_map.values())[0] |
|
else: |
|
self.device = PartialState().default_device |
|
|
|
if self.device_map is None: |
|
self.model.to(self.device) |
|
|
|
super().setup() |
|
|
|
def encode(self, raw_inputs): |
|
""" |
|
Uses the `pre_processor` to prepare the inputs for the `model`. |
|
""" |
|
return self.pre_processor(raw_inputs) |
|
|
|
def forward(self, inputs): |
|
""" |
|
Sends the inputs through the `model`. |
|
""" |
|
with torch.no_grad(): |
|
return self.model(**inputs) |
|
|
|
def decode(self, outputs): |
|
""" |
|
Uses the `post_processor` to decode the model output. |
|
""" |
|
return self.post_processor(outputs) |
|
|
|
def __call__(self, *args, **kwargs): |
|
args, kwargs = handle_agent_inputs(*args, **kwargs) |
|
|
|
if not self.is_initialized: |
|
self.setup() |
|
|
|
encoded_inputs = self.encode(*args, **kwargs) |
|
encoded_inputs = send_to_device(encoded_inputs, self.device) |
|
outputs = self.forward(encoded_inputs) |
|
outputs = send_to_device(outputs, "cpu") |
|
decoded_outputs = self.decode(outputs) |
|
|
|
return handle_agent_outputs(decoded_outputs, self.outputs) |
|
|
|
|
|
def launch_gradio_demo(tool_class: Tool): |
|
""" |
|
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes |
|
`inputs` and `outputs`. |
|
|
|
Args: |
|
tool_class (`type`): The class of the tool for which to launch the demo. |
|
""" |
|
try: |
|
import gradio as gr |
|
except ImportError: |
|
raise ImportError("Gradio should be installed in order to launch a gradio demo.") |
|
|
|
tool = tool_class() |
|
|
|
def fn(*args, **kwargs): |
|
return tool(*args, **kwargs) |
|
|
|
gr.Interface( |
|
fn=fn, |
|
inputs=tool_class.inputs, |
|
outputs=tool_class.outputs, |
|
title=tool_class.__name__, |
|
article=tool.description, |
|
).launch() |
|
|
|
|
|
TASK_MAPPING = { |
|
"document-question-answering": "DocumentQuestionAnsweringTool", |
|
"image-captioning": "ImageCaptioningTool", |
|
"image-question-answering": "ImageQuestionAnsweringTool", |
|
"image-segmentation": "ImageSegmentationTool", |
|
"speech-to-text": "SpeechToTextTool", |
|
"summarization": "TextSummarizationTool", |
|
"text-classification": "TextClassificationTool", |
|
"text-question-answering": "TextQuestionAnsweringTool", |
|
"text-to-speech": "TextToSpeechTool", |
|
"translation": "TranslationTool", |
|
} |
|
|
|
|
|
def get_default_endpoints(): |
|
endpoints_file = cached_file("huggingface-tools/default-endpoints", "default_endpoints.json", repo_type="dataset") |
|
with open(endpoints_file, "r", encoding="utf-8") as f: |
|
endpoints = json.load(f) |
|
return endpoints |
|
|
|
|
|
def supports_remote(task_or_repo_id): |
|
endpoints = get_default_endpoints() |
|
return task_or_repo_id in endpoints |
|
|
|
|
|
def load_tool(task_or_repo_id, model_repo_id=None, remote=False, token=None, **kwargs): |
|
""" |
|
Main function to quickly load a tool, be it on the Hub or in the Transformers library. |
|
|
|
<Tip warning={true}> |
|
|
|
Loading a tool means that you'll download the tool and execute it locally. |
|
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when |
|
installing a package using pip/npm/apt. |
|
|
|
</Tip> |
|
|
|
Args: |
|
task_or_repo_id (`str`): |
|
The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers |
|
are: |
|
|
|
- `"document-question-answering"` |
|
- `"image-captioning"` |
|
- `"image-question-answering"` |
|
- `"image-segmentation"` |
|
- `"speech-to-text"` |
|
- `"summarization"` |
|
- `"text-classification"` |
|
- `"text-question-answering"` |
|
- `"text-to-speech"` |
|
- `"translation"` |
|
|
|
model_repo_id (`str`, *optional*): |
|
Use this argument to use a different model than the default one for the tool you selected. |
|
remote (`bool`, *optional*, defaults to `False`): |
|
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint. |
|
token (`str`, *optional*): |
|
The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli |
|
login` (stored in `~/.huggingface`). |
|
kwargs (additional keyword arguments, *optional*): |
|
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as |
|
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others |
|
will be passed along to its init. |
|
""" |
|
if task_or_repo_id in TASK_MAPPING: |
|
tool_class_name = TASK_MAPPING[task_or_repo_id] |
|
main_module = importlib.import_module("transformers") |
|
tools_module = main_module.tools |
|
tool_class = getattr(tools_module, tool_class_name) |
|
|
|
if remote: |
|
if model_repo_id is None: |
|
endpoints = get_default_endpoints() |
|
if task_or_repo_id not in endpoints: |
|
raise ValueError( |
|
f"Could not infer a default endpoint for {task_or_repo_id}, you need to pass one using the " |
|
"`model_repo_id` argument." |
|
) |
|
model_repo_id = endpoints[task_or_repo_id] |
|
return RemoteTool(model_repo_id, token=token, tool_class=tool_class) |
|
else: |
|
return tool_class(model_repo_id, token=token, **kwargs) |
|
else: |
|
logger.warning_once( |
|
f"You're loading a tool from the Hub from {model_repo_id}. Please make sure this is a source that you " |
|
f"trust as the code within that tool will be executed on your machine. Always verify the code of " |
|
f"the tools that you load. We recommend specifying a `revision` to ensure you're loading the " |
|
f"code that you have checked." |
|
) |
|
return Tool.from_hub(task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs) |
|
|
|
|
|
def add_description(description): |
|
""" |
|
A decorator that adds a description to a function. |
|
""" |
|
|
|
def inner(func): |
|
func.description = description |
|
func.name = func.__name__ |
|
return func |
|
|
|
return inner |
|
|
|
|
|
|
|
class EndpointClient: |
|
def __init__(self, endpoint_url: str, token: Optional[str] = None): |
|
self.headers = {**build_hf_headers(token=token), "Content-Type": "application/json"} |
|
self.endpoint_url = endpoint_url |
|
|
|
@staticmethod |
|
def encode_image(image): |
|
_bytes = io.BytesIO() |
|
image.save(_bytes, format="PNG") |
|
b64 = base64.b64encode(_bytes.getvalue()) |
|
return b64.decode("utf-8") |
|
|
|
@staticmethod |
|
def decode_image(raw_image): |
|
if not is_vision_available(): |
|
raise ImportError( |
|
"This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)." |
|
) |
|
|
|
from PIL import Image |
|
|
|
b64 = base64.b64decode(raw_image) |
|
_bytes = io.BytesIO(b64) |
|
return Image.open(_bytes) |
|
|
|
def __call__( |
|
self, |
|
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, |
|
params: Optional[Dict] = None, |
|
data: Optional[bytes] = None, |
|
output_image: bool = False, |
|
) -> Any: |
|
|
|
payload = {} |
|
if inputs: |
|
payload["inputs"] = inputs |
|
if params: |
|
payload["parameters"] = params |
|
|
|
|
|
response = get_session().post(self.endpoint_url, headers=self.headers, json=payload, data=data) |
|
|
|
|
|
if output_image: |
|
return self.decode_image(response.content) |
|
else: |
|
return response.json() |
|
|