|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Doc utilities: Utilities related to documentation |
|
""" |
|
|
|
import functools |
|
import re |
|
import types |
|
|
|
|
|
def add_start_docstrings(*docstr): |
|
def docstring_decorator(fn): |
|
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def add_start_docstrings_to_model_forward(*docstr): |
|
def docstring_decorator(fn): |
|
docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") |
|
class_name = f"[`{fn.__qualname__.split('.')[0]}`]" |
|
intro = f" The {class_name} forward method, overrides the `__call__` special method." |
|
note = r""" |
|
|
|
<Tip> |
|
|
|
Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`] |
|
instance afterwards instead of this since the former takes care of running the pre and post processing steps while |
|
the latter silently ignores them. |
|
|
|
</Tip> |
|
""" |
|
|
|
fn.__doc__ = intro + note + docstring |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def add_end_docstrings(*docstr): |
|
def docstring_decorator(fn): |
|
fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr) |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
PT_RETURN_INTRODUCTION = r""" |
|
Returns: |
|
[`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of |
|
`torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various |
|
elements depending on the configuration ([`{config_class}`]) and inputs. |
|
|
|
""" |
|
|
|
|
|
TF_RETURN_INTRODUCTION = r""" |
|
Returns: |
|
[`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if |
|
`return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the |
|
configuration ([`{config_class}`]) and inputs. |
|
|
|
""" |
|
|
|
|
|
def _get_indent(t): |
|
"""Returns the indentation in the first line of t""" |
|
search = re.search(r"^(\s*)\S", t) |
|
return "" if search is None else search.groups()[0] |
|
|
|
|
|
def _convert_output_args_doc(output_args_doc): |
|
"""Convert output_args_doc to display properly.""" |
|
|
|
indent = _get_indent(output_args_doc) |
|
blocks = [] |
|
current_block = "" |
|
for line in output_args_doc.split("\n"): |
|
|
|
if _get_indent(line) == indent: |
|
if len(current_block) > 0: |
|
blocks.append(current_block[:-1]) |
|
current_block = f"{line}\n" |
|
else: |
|
|
|
|
|
current_block += f"{line[2:]}\n" |
|
blocks.append(current_block[:-1]) |
|
|
|
|
|
for i in range(len(blocks)): |
|
blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i]) |
|
blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i]) |
|
|
|
return "\n".join(blocks) |
|
|
|
|
|
def _prepare_output_docstrings(output_type, config_class, min_indent=None): |
|
""" |
|
Prepares the return part of the docstring using `output_type`. |
|
""" |
|
output_docstring = output_type.__doc__ |
|
|
|
|
|
lines = output_docstring.split("\n") |
|
i = 0 |
|
while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None: |
|
i += 1 |
|
if i < len(lines): |
|
params_docstring = "\n".join(lines[(i + 1) :]) |
|
params_docstring = _convert_output_args_doc(params_docstring) |
|
else: |
|
raise ValueError( |
|
f"No `Args` or `Parameters` section is found in the docstring of `{output_type.__name__}`. Make sure it has " |
|
"docstring and contain either `Args` or `Parameters`." |
|
) |
|
|
|
|
|
full_output_type = f"{output_type.__module__}.{output_type.__name__}" |
|
intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION |
|
intro = intro.format(full_output_type=full_output_type, config_class=config_class) |
|
result = intro + params_docstring |
|
|
|
|
|
if min_indent is not None: |
|
lines = result.split("\n") |
|
|
|
i = 0 |
|
while len(lines[i]) == 0: |
|
i += 1 |
|
indent = len(_get_indent(lines[i])) |
|
|
|
if indent < min_indent: |
|
to_add = " " * (min_indent - indent) |
|
lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines] |
|
result = "\n".join(lines) |
|
|
|
return result |
|
|
|
|
|
FAKE_MODEL_DISCLAIMER = """ |
|
<Tip warning={true}> |
|
|
|
This example uses a random model as the real ones are all very big. To get proper results, you should use |
|
{real_checkpoint} instead of {fake_checkpoint}. If you get out-of-memory when loading that checkpoint, you can try |
|
adding `device_map="auto"` in the `from_pretrained` call. |
|
|
|
</Tip> |
|
""" |
|
|
|
|
|
PT_TOKEN_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer( |
|
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" |
|
... ) |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_token_class_ids = logits.argmax(-1) |
|
|
|
>>> # Note that tokens are classified rather then input words which means that |
|
>>> # there might be more predicted token classes than words. |
|
>>> # Multiple token classes might account for the same word |
|
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] |
|
>>> predicted_tokens_classes |
|
{expected_output} |
|
|
|
>>> labels = predicted_token_class_ids |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_QUESTION_ANSWERING_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
|
|
>>> inputs = tokenizer(question, text, return_tensors="pt") |
|
>>> with torch.no_grad(): |
|
... outputs = model(**inputs) |
|
|
|
>>> answer_start_index = outputs.start_logits.argmax() |
|
>>> answer_end_index = outputs.end_logits.argmax() |
|
|
|
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] |
|
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True) |
|
{expected_output} |
|
|
|
>>> # target is "nice puppet" |
|
>>> target_start_index = torch.tensor([{qa_target_start_index}]) |
|
>>> target_end_index = torch.tensor([{qa_target_end_index}]) |
|
|
|
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) |
|
>>> loss = outputs.loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_SEQUENCE_CLASSIFICATION_SAMPLE = r""" |
|
Example of single-label classification: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = logits.argmax().item() |
|
>>> model.config.id2label[predicted_class_id] |
|
{expected_output} |
|
|
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) |
|
|
|
>>> labels = torch.tensor([1]) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
|
|
Example of multi-label classification: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] |
|
|
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = {model_class}.from_pretrained( |
|
... "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification" |
|
... ) |
|
|
|
>>> labels = torch.sum( |
|
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 |
|
... ).to(torch.float) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
``` |
|
""" |
|
|
|
PT_MASKED_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> # retrieve index of {mask} |
|
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] |
|
|
|
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) |
|
>>> tokenizer.decode(predicted_token_id) |
|
{expected_output} |
|
|
|
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] |
|
>>> # mask labels of non-{mask} tokens |
|
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) |
|
|
|
>>> outputs = model(**inputs, labels=labels) |
|
>>> round(outputs.loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
``` |
|
""" |
|
|
|
PT_MULTIPLE_CHOICE_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> choice0 = "It is eaten with a fork and a knife." |
|
>>> choice1 = "It is eaten while held in the hand." |
|
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 |
|
|
|
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) |
|
>>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels) # batch size is 1 |
|
|
|
>>> # the linear classifier still needs to be trained |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
PT_CAUSAL_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs, labels=inputs["input_ids"]) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
PT_SPEECH_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor, {model_class} |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
>>> with torch.no_grad(): |
|
... outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_SPEECH_CTC_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
>>> predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
>>> # transcribe speech |
|
>>> transcription = processor.batch_decode(predicted_ids) |
|
>>> transcription[0] |
|
{expected_output} |
|
|
|
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids |
|
|
|
>>> # compute loss |
|
>>> loss = model(**inputs).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_SPEECH_SEQ_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoFeatureExtractor, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_ids = torch.argmax(logits, dim=-1).item() |
|
>>> predicted_label = model.config.id2label[predicted_class_ids] |
|
>>> predicted_label |
|
{expected_output} |
|
|
|
>>> # compute loss - target_label is e.g. "down" |
|
>>> target_label = model.config.id2label[0] |
|
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]]) |
|
>>> loss = model(**inputs).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
|
|
PT_SPEECH_FRAME_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoFeatureExtractor, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate) |
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> probabilities = torch.sigmoid(logits[0]) |
|
>>> # labels is a one-hot array of shape (num_frames, num_speakers) |
|
>>> labels = (probabilities > 0.5).long() |
|
>>> labels[0].tolist() |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
|
|
PT_SPEECH_XVECTOR_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoFeatureExtractor, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = feature_extractor( |
|
... [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True |
|
... ) |
|
>>> with torch.no_grad(): |
|
... embeddings = model(**inputs).embeddings |
|
|
|
>>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() |
|
|
|
>>> # the resulting embeddings can be used for cosine similarity-based retrieval |
|
>>> cosine_sim = torch.nn.CosineSimilarity(dim=-1) |
|
>>> similarity = cosine_sim(embeddings[0], embeddings[1]) |
|
>>> threshold = 0.7 # the optimal threshold is dataset-dependent |
|
>>> if similarity < threshold: |
|
... print("Speakers are not the same!") |
|
>>> round(similarity.item(), 2) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_VISION_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, {model_class} |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = image_processor(image, return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_VISION_SEQ_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, {model_class} |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = image_processor(image, return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_label = logits.argmax(-1).item() |
|
>>> print(model.config.id2label[predicted_label]) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
|
|
PT_SAMPLE_DOCSTRINGS = { |
|
"SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE, |
|
"QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE, |
|
"TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE, |
|
"MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE, |
|
"MaskedLM": PT_MASKED_LM_SAMPLE, |
|
"LMHead": PT_CAUSAL_LM_SAMPLE, |
|
"BaseModel": PT_BASE_MODEL_SAMPLE, |
|
"SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE, |
|
"CTC": PT_SPEECH_CTC_SAMPLE, |
|
"AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE, |
|
"AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE, |
|
"AudioXVector": PT_SPEECH_XVECTOR_SAMPLE, |
|
"VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE, |
|
"ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE, |
|
} |
|
|
|
|
|
TF_TOKEN_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer( |
|
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf" |
|
... ) |
|
|
|
>>> logits = model(**inputs).logits |
|
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) |
|
|
|
>>> # Note that tokens are classified rather then input words which means that |
|
>>> # there might be more predicted token classes than words. |
|
>>> # Multiple token classes might account for the same word |
|
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] |
|
>>> predicted_tokens_classes |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> labels = predicted_token_class_ids |
|
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss) |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_QUESTION_ANSWERING_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
|
|
>>> inputs = tokenizer(question, text, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) |
|
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) |
|
|
|
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] |
|
>>> tokenizer.decode(predict_answer_tokens) |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # target is "nice puppet" |
|
>>> target_start_index = tf.constant([{qa_target_start_index}]) |
|
>>> target_end_index = tf.constant([{qa_target_end_index}]) |
|
|
|
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) |
|
>>> loss = tf.math.reduce_mean(outputs.loss) |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_SEQUENCE_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") |
|
|
|
>>> logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) |
|
>>> model.config.id2label[predicted_class_id] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) |
|
|
|
>>> labels = tf.constant(1) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_MASKED_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
|
|
>>> # retrieve index of {mask} |
|
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) |
|
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) |
|
|
|
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) |
|
>>> tokenizer.decode(predicted_token_id) |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] |
|
>>> # mask labels of non-{mask} tokens |
|
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) |
|
|
|
>>> outputs = model(**inputs, labels=labels) |
|
>>> round(float(outputs.loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") |
|
>>> outputs = model(inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
``` |
|
""" |
|
|
|
TF_MULTIPLE_CHOICE_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> choice0 = "It is eaten with a fork and a knife." |
|
>>> choice1 = "It is eaten while held in the hand." |
|
|
|
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True) |
|
>>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}} |
|
>>> outputs = model(inputs) # batch size is 1 |
|
|
|
>>> # the linear classifier still needs to be trained |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
TF_CAUSAL_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") |
|
>>> outputs = model(inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
TF_SPEECH_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor, {model_class} |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
TF_SPEECH_CTC_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import tensorflow as tf |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
>>> predicted_ids = tf.math.argmax(logits, axis=-1) |
|
|
|
>>> # transcribe speech |
|
>>> transcription = processor.batch_decode(predicted_ids) |
|
>>> transcription[0] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids |
|
|
|
>>> # compute loss |
|
>>> loss = model(**inputs).loss |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_VISION_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, {model_class} |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = image_processor(image, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
TF_VISION_SEQ_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, {model_class} |
|
>>> import tensorflow as tf |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = image_processor(image, return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
|
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_label = int(tf.math.argmax(logits, axis=-1)) |
|
>>> print(model.config.id2label[predicted_label]) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
TF_SAMPLE_DOCSTRINGS = { |
|
"SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE, |
|
"QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE, |
|
"TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE, |
|
"MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE, |
|
"MaskedLM": TF_MASKED_LM_SAMPLE, |
|
"LMHead": TF_CAUSAL_LM_SAMPLE, |
|
"BaseModel": TF_BASE_MODEL_SAMPLE, |
|
"SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE, |
|
"CTC": TF_SPEECH_CTC_SAMPLE, |
|
"VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE, |
|
"ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE, |
|
} |
|
|
|
|
|
FLAX_TOKEN_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_QUESTION_ANSWERING_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
>>> inputs = tokenizer(question, text, return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> start_scores = outputs.start_logits |
|
>>> end_scores = outputs.end_logits |
|
``` |
|
""" |
|
|
|
FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_MASKED_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
``` |
|
""" |
|
|
|
FLAX_MULTIPLE_CHOICE_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> choice0 = "It is eaten with a fork and a knife." |
|
>>> choice1 = "It is eaten while held in the hand." |
|
|
|
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True) |
|
>>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}}) |
|
|
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_CAUSAL_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, {model_class} |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> # retrieve logts for next token |
|
>>> next_token_logits = outputs.logits[:, -1] |
|
``` |
|
""" |
|
|
|
FLAX_SAMPLE_DOCSTRINGS = { |
|
"SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE, |
|
"QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE, |
|
"TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE, |
|
"MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE, |
|
"MaskedLM": FLAX_MASKED_LM_SAMPLE, |
|
"BaseModel": FLAX_BASE_MODEL_SAMPLE, |
|
"LMHead": FLAX_CAUSAL_LM_SAMPLE, |
|
} |
|
|
|
|
|
def filter_outputs_from_example(docstring, **kwargs): |
|
""" |
|
Removes the lines testing an output with the doctest syntax in a code sample when it's set to `None`. |
|
""" |
|
for key, value in kwargs.items(): |
|
if value is not None: |
|
continue |
|
|
|
doc_key = "{" + key + "}" |
|
docstring = re.sub(rf"\n([^\n]+)\n\s+{doc_key}\n", "\n", docstring) |
|
|
|
return docstring |
|
|
|
|
|
def add_code_sample_docstrings( |
|
*docstr, |
|
processor_class=None, |
|
checkpoint=None, |
|
output_type=None, |
|
config_class=None, |
|
mask="[MASK]", |
|
qa_target_start_index=14, |
|
qa_target_end_index=15, |
|
model_cls=None, |
|
modality=None, |
|
expected_output=None, |
|
expected_loss=None, |
|
real_checkpoint=None, |
|
revision=None, |
|
): |
|
def docstring_decorator(fn): |
|
|
|
model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls |
|
|
|
if model_class[:2] == "TF": |
|
sample_docstrings = TF_SAMPLE_DOCSTRINGS |
|
elif model_class[:4] == "Flax": |
|
sample_docstrings = FLAX_SAMPLE_DOCSTRINGS |
|
else: |
|
sample_docstrings = PT_SAMPLE_DOCSTRINGS |
|
|
|
|
|
|
|
|
|
doc_kwargs = { |
|
"model_class": model_class, |
|
"processor_class": processor_class, |
|
"checkpoint": checkpoint, |
|
"mask": mask, |
|
"qa_target_start_index": qa_target_start_index, |
|
"qa_target_end_index": qa_target_end_index, |
|
"expected_output": expected_output, |
|
"expected_loss": expected_loss, |
|
"real_checkpoint": real_checkpoint, |
|
"fake_checkpoint": checkpoint, |
|
"true": "{true}", |
|
} |
|
|
|
if ("SequenceClassification" in model_class or "AudioClassification" in model_class) and modality == "audio": |
|
code_sample = sample_docstrings["AudioClassification"] |
|
elif "SequenceClassification" in model_class: |
|
code_sample = sample_docstrings["SequenceClassification"] |
|
elif "QuestionAnswering" in model_class: |
|
code_sample = sample_docstrings["QuestionAnswering"] |
|
elif "TokenClassification" in model_class: |
|
code_sample = sample_docstrings["TokenClassification"] |
|
elif "MultipleChoice" in model_class: |
|
code_sample = sample_docstrings["MultipleChoice"] |
|
elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]: |
|
code_sample = sample_docstrings["MaskedLM"] |
|
elif "LMHead" in model_class or "CausalLM" in model_class: |
|
code_sample = sample_docstrings["LMHead"] |
|
elif "CTC" in model_class: |
|
code_sample = sample_docstrings["CTC"] |
|
elif "AudioFrameClassification" in model_class: |
|
code_sample = sample_docstrings["AudioFrameClassification"] |
|
elif "XVector" in model_class and modality == "audio": |
|
code_sample = sample_docstrings["AudioXVector"] |
|
elif "Model" in model_class and modality == "audio": |
|
code_sample = sample_docstrings["SpeechBaseModel"] |
|
elif "Model" in model_class and modality == "vision": |
|
code_sample = sample_docstrings["VisionBaseModel"] |
|
elif "Model" in model_class or "Encoder" in model_class: |
|
code_sample = sample_docstrings["BaseModel"] |
|
elif "ImageClassification" in model_class: |
|
code_sample = sample_docstrings["ImageClassification"] |
|
else: |
|
raise ValueError(f"Docstring can't be built for model {model_class}") |
|
|
|
code_sample = filter_outputs_from_example( |
|
code_sample, expected_output=expected_output, expected_loss=expected_loss |
|
) |
|
if real_checkpoint is not None: |
|
code_sample = FAKE_MODEL_DISCLAIMER + code_sample |
|
func_doc = (fn.__doc__ or "") + "".join(docstr) |
|
output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class) |
|
built_doc = code_sample.format(**doc_kwargs) |
|
if revision is not None: |
|
if re.match(r"^refs/pr/\\d+", revision): |
|
raise ValueError( |
|
f"The provided revision '{revision}' is incorrect. It should point to" |
|
" a pull request reference on the hub like 'refs/pr/6'" |
|
) |
|
built_doc = built_doc.replace( |
|
f'from_pretrained("{checkpoint}")', f'from_pretrained("{checkpoint}", revision="{revision}")' |
|
) |
|
fn.__doc__ = func_doc + output_doc + built_doc |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def replace_return_docstrings(output_type=None, config_class=None): |
|
def docstring_decorator(fn): |
|
func_doc = fn.__doc__ |
|
lines = func_doc.split("\n") |
|
i = 0 |
|
while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None: |
|
i += 1 |
|
if i < len(lines): |
|
indent = len(_get_indent(lines[i])) |
|
lines[i] = _prepare_output_docstrings(output_type, config_class, min_indent=indent) |
|
func_doc = "\n".join(lines) |
|
else: |
|
raise ValueError( |
|
f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, " |
|
f"current docstring is:\n{func_doc}" |
|
) |
|
fn.__doc__ = func_doc |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def copy_func(f): |
|
"""Returns a copy of a function f.""" |
|
|
|
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) |
|
g = functools.update_wrapper(g, f) |
|
g.__kwdefaults__ = f.__kwdefaults__ |
|
return g |
|
|