Aston-xMAD's picture
init commit
b37c16f verified
# coding=utf-8
# Copyright 2020 Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def format_time(t):
"Format `t` (in seconds) to (h):mm:ss"
t = int(t)
h, m, s = t // 3600, (t // 60) % 60, t % 60
return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"
def html_progress_bar(value, total, prefix, label, width=300):
# docstyle-ignore
return f"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def text_to_html_table(items):
"Put the texts in `items` in an HTML table."
html_code = """<table border="1" class="dataframe">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f" <th>{i}</th>\n"
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt)
html_code += f" <td>{elt}</td>\n"
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class NotebookProgressBar:
"""
A progress par for display in a notebook.
Class attributes (overridden by derived classes)
- **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`.
- **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed
`update_every` seconds. The progress bar uses the average time passed up until now to guess the next value
for which it will call the update.
Args:
total (`int`):
The total number of iterations to reach.
prefix (`str`, *optional*):
A prefix to add before the progress bar.
leave (`bool`, *optional*, defaults to `True`):
Whether or not to leave the progress bar once it's completed. You can always call the
[`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear.
parent ([`~notebook.NotebookTrainingTracker`], *optional*):
A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle
their display. If set, the object passed must have a `display()` method.
width (`int`, *optional*, defaults to 300):
The width (in pixels) that the bar will take.
Example:
```python
import time
pbar = NotebookProgressBar(100)
for val in range(100):
pbar.update(val)
time.sleep(0.07)
pbar.update(100)
```"""
warmup = 5
update_every = 0.2
def __init__(
self,
total: int,
prefix: Optional[str] = None,
leave: bool = True,
parent: Optional["NotebookTrainingTracker"] = None,
width: int = 300,
):
self.total = total
self.prefix = "" if prefix is None else prefix
self.leave = leave
self.parent = parent
self.width = width
self.last_value = None
self.comment = None
self.output = None
def update(self, value: int, force_update: bool = False, comment: str = None):
"""
The main method to update the progress bar to `value`.
Args:
value (`int`):
The value to use. Must be between 0 and `total`.
force_update (`bool`, *optional*, defaults to `False`):
Whether or not to force and update of the internal state and display (by default, the bar will wait for
`value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute
since the last update to avoid adding boilerplate).
comment (`str`, *optional*):
A comment to add on the left of the progress bar.
"""
self.value = value
if comment is not None:
self.comment = comment
if self.last_value is None:
self.start_time = self.last_time = time.time()
self.start_value = self.last_value = value
self.elapsed_time = self.predicted_remaining = None
self.first_calls = self.warmup
self.wait_for = 1
self.update_bar(value)
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total):
if self.first_calls > 0:
self.first_calls -= 1
current_time = time.time()
self.elapsed_time = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
self.average_time_per_item = self.elapsed_time / (value - self.start_value)
else:
self.average_time_per_item = None
if value >= self.total:
value = self.total
self.predicted_remaining = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
self.predicted_remaining = self.average_time_per_item * (self.total - value)
self.update_bar(value)
self.last_value = value
self.last_time = current_time
if (self.average_time_per_item is None) or (self.average_time_per_item == 0):
self.wait_for = 1
else:
self.wait_for = max(int(self.update_every / self.average_time_per_item), 1)
def update_bar(self, value, comment=None):
spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value)
if self.elapsed_time is None:
self.label = f"[{spaced_value}/{self.total} : < :"
elif self.predicted_remaining is None:
self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
else:
self.label = (
f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
f" {format_time(self.predicted_remaining)}"
)
if self.average_time_per_item == 0:
self.label += ", +inf it/s"
else:
self.label += f", {1/self.average_time_per_item:.2f} it/s"
self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]"
self.display()
def display(self):
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
else:
self.output.update(disp.HTML(self.html_code))
def close(self):
"Closes the progress bar."
if self.parent is None and self.output is not None:
self.output.update(disp.HTML(""))
class NotebookTrainingTracker(NotebookProgressBar):
"""
An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.
Args:
num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
The list of column names for the metrics table (will be inferred from the first call to
[`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
"""
def __init__(self, num_steps, column_names=None):
super().__init__(num_steps)
self.inner_table = None if column_names is None else [column_names]
self.child_bar = None
def display(self):
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table)
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
else:
self.output.update(disp.HTML(self.html_code))
def write_line(self, values):
"""
Write the values in the inner table.
Args:
values (`Dict[str, float]`): The values to display.
"""
if self.inner_table is None:
self.inner_table = [list(values.keys()), list(values.values())]
else:
columns = self.inner_table[0]
for key in values.keys():
if key not in columns:
columns.append(key)
self.inner_table[0] = columns
if len(self.inner_table) > 1:
last_values = self.inner_table[-1]
first_column = self.inner_table[0][0]
if last_values[0] != values[first_column]:
# write new line
self.inner_table.append([values[c] if c in values else "No Log" for c in columns])
else:
# update last line
new_values = values
for c in columns:
if c not in new_values.keys():
new_values[c] = last_values[columns.index(c)]
self.inner_table[-1] = [new_values[c] for c in columns]
else:
self.inner_table.append([values[c] for c in columns])
def add_child(self, total, prefix=None, width=300):
"""
Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be
easily updated).
Args:
total (`int`): The number of iterations for the child progress bar.
prefix (`str`, *optional*): A prefix to write on the left of the progress bar.
width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar.
"""
self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width)
return self.child_bar
def remove_child(self):
"""
Closes the child progress bar.
"""
self.child_bar = None
self.display()
class NotebookProgressCallback(TrainerCallback):
"""
A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or
Google colab.
"""
def __init__(self):
self.training_tracker = None
self.prediction_bar = None
self._force_next_update = False
def on_train_begin(self, args, state, control, **kwargs):
self.first_column = "Epoch" if args.eval_strategy == IntervalStrategy.EPOCH else "Step"
self.training_loss = 0
self.last_log = 0
column_names = [self.first_column] + ["Training Loss"]
if args.eval_strategy != IntervalStrategy.NO:
column_names.append("Validation Loss")
self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names)
def on_step_end(self, args, state, control, **kwargs):
epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}"
self.training_tracker.update(
state.global_step + 1,
comment=f"Epoch {epoch}/{state.num_train_epochs}",
force_update=self._force_next_update,
)
self._force_next_update = False
def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
if not has_length(eval_dataloader):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader))
else:
self.prediction_bar = NotebookProgressBar(len(eval_dataloader))
self.prediction_bar.update(1)
else:
self.prediction_bar.update(self.prediction_bar.value + 1)
def on_predict(self, args, state, control, **kwargs):
if self.prediction_bar is not None:
self.prediction_bar.close()
self.prediction_bar = None
def on_log(self, args, state, control, logs=None, **kwargs):
# Only for when there is no evaluation
if args.eval_strategy == IntervalStrategy.NO and "loss" in logs:
values = {"Training Loss": logs["loss"]}
# First column is necessarily Step sine we're not in epoch eval strategy
values["Step"] = state.global_step
self.training_tracker.write_line(values)
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if self.training_tracker is not None:
values = {"Training Loss": "No log", "Validation Loss": "No log"}
for log in reversed(state.log_history):
if "loss" in log:
values["Training Loss"] = log["loss"]
break
if self.first_column == "Epoch":
values["Epoch"] = int(state.epoch)
else:
values["Step"] = state.global_step
metric_key_prefix = "eval"
for k in metrics:
if k.endswith("_loss"):
metric_key_prefix = re.sub(r"\_loss$", "", k)
_ = metrics.pop("total_flos", None)
_ = metrics.pop("epoch", None)
_ = metrics.pop(f"{metric_key_prefix}_runtime", None)
_ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None)
_ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None)
_ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None)
for k, v in metrics.items():
splits = k.split("_")
name = " ".join([part.capitalize() for part in splits[1:]])
if name == "Loss":
# Single dataset
name = "Validation Loss"
values[name] = v
self.training_tracker.write_line(values)
self.training_tracker.remove_child()
self.prediction_bar = None
# Evaluation takes a long time so we should force the next update.
self._force_next_update = True
def on_train_end(self, args, state, control, **kwargs):
self.training_tracker.update(
state.global_step,
comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}",
force_update=True,
)
self.training_tracker = None