|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`. |
|
|
|
Usage for an update (as used by the GitHub action `update_metadata`): |
|
|
|
```bash |
|
python utils/update_metadata.py --token <token> --commit_sha <commit_sha> |
|
``` |
|
|
|
Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so |
|
that new pipelines are properly added as metadata (as used in `make repo-consistency`): |
|
|
|
```bash |
|
python utils/update_metadata.py --check-only |
|
``` |
|
""" |
|
import argparse |
|
import collections |
|
import os |
|
import re |
|
import tempfile |
|
from typing import Dict, List, Tuple |
|
|
|
import pandas as pd |
|
from datasets import Dataset |
|
from huggingface_hub import hf_hub_download, upload_folder |
|
|
|
from transformers.utils import direct_transformers_import |
|
|
|
|
|
|
|
|
|
TRANSFORMERS_PATH = "src/transformers" |
|
|
|
|
|
|
|
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) |
|
|
|
|
|
|
|
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") |
|
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") |
|
|
|
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") |
|
|
|
|
|
|
|
PIPELINE_TAGS_AND_AUTO_MODELS = [ |
|
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), |
|
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), |
|
("image-feature-extraction", "MODEL_FOR_IMAGE_MAPPING_NAMES", "AutoModel"), |
|
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), |
|
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), |
|
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), |
|
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), |
|
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), |
|
("image-to-image", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES", "AutoModelForImageToImage"), |
|
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), |
|
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), |
|
( |
|
"zero-shot-object-detection", |
|
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", |
|
"AutoModelForZeroShotObjectDetection", |
|
), |
|
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), |
|
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), |
|
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), |
|
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), |
|
( |
|
"table-question-answering", |
|
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", |
|
"AutoModelForTableQuestionAnswering", |
|
), |
|
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), |
|
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), |
|
( |
|
"next-sentence-prediction", |
|
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", |
|
"AutoModelForNextSentencePrediction", |
|
), |
|
( |
|
"audio-frame-classification", |
|
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", |
|
"AutoModelForAudioFrameClassification", |
|
), |
|
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), |
|
( |
|
"document-question-answering", |
|
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", |
|
"AutoModelForDocumentQuestionAnswering", |
|
), |
|
( |
|
"visual-question-answering", |
|
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", |
|
"AutoModelForVisualQuestionAnswering", |
|
), |
|
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), |
|
( |
|
"zero-shot-image-classification", |
|
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", |
|
"AutoModelForZeroShotImageClassification", |
|
), |
|
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), |
|
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), |
|
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), |
|
("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"), |
|
("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"), |
|
] |
|
|
|
|
|
def camel_case_split(identifier: str) -> List[str]: |
|
""" |
|
Split a camel-cased name into words. |
|
|
|
Args: |
|
identifier (`str`): The camel-cased name to parse. |
|
|
|
Returns: |
|
`List[str]`: The list of words in the identifier (as seprated by capital letters). |
|
|
|
Example: |
|
|
|
```py |
|
>>> camel_case_split("CamelCasedClass") |
|
["Camel", "Cased", "Class"] |
|
``` |
|
""" |
|
|
|
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) |
|
return [m.group(0) for m in matches] |
|
|
|
|
|
def get_frameworks_table() -> pd.DataFrame: |
|
""" |
|
Generates a dataframe containing the supported auto classes for each model type, using the content of the auto |
|
modules. |
|
""" |
|
|
|
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES |
|
model_prefix_to_model_type = { |
|
config.replace("Config", ""): model_type for model_type, config in config_maping_names.items() |
|
} |
|
|
|
|
|
pt_models = collections.defaultdict(bool) |
|
tf_models = collections.defaultdict(bool) |
|
flax_models = collections.defaultdict(bool) |
|
|
|
|
|
for attr_name in dir(transformers_module): |
|
lookup_dict = None |
|
if _re_tf_models.match(attr_name) is not None: |
|
lookup_dict = tf_models |
|
attr_name = _re_tf_models.match(attr_name).groups()[0] |
|
elif _re_flax_models.match(attr_name) is not None: |
|
lookup_dict = flax_models |
|
attr_name = _re_flax_models.match(attr_name).groups()[0] |
|
elif _re_pt_models.match(attr_name) is not None: |
|
lookup_dict = pt_models |
|
attr_name = _re_pt_models.match(attr_name).groups()[0] |
|
|
|
if lookup_dict is not None: |
|
while len(attr_name) > 0: |
|
if attr_name in model_prefix_to_model_type: |
|
lookup_dict[model_prefix_to_model_type[attr_name]] = True |
|
break |
|
|
|
attr_name = "".join(camel_case_split(attr_name)[:-1]) |
|
|
|
all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys())) |
|
all_models = list(all_models) |
|
all_models.sort() |
|
|
|
data = {"model_type": all_models} |
|
data["pytorch"] = [pt_models[t] for t in all_models] |
|
data["tensorflow"] = [tf_models[t] for t in all_models] |
|
data["flax"] = [flax_models[t] for t in all_models] |
|
|
|
|
|
|
|
processors = {} |
|
for t in all_models: |
|
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: |
|
processors[t] = "AutoProcessor" |
|
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: |
|
processors[t] = "AutoTokenizer" |
|
elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES: |
|
processors[t] = "AutoImageProcessor" |
|
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: |
|
processors[t] = "AutoFeatureExtractor" |
|
else: |
|
|
|
processors[t] = "AutoTokenizer" |
|
|
|
data["processor"] = [processors[t] for t in all_models] |
|
|
|
return pd.DataFrame(data) |
|
|
|
|
|
def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]: |
|
""" |
|
Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore. |
|
|
|
Args: |
|
table (`Dict[str, Tuple[str, str]]`): |
|
The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with |
|
which they should be used. |
|
|
|
Returns: |
|
`Dict[str, Tuple[str, str]]`: The updated table in the same format. |
|
""" |
|
auto_modules = [ |
|
transformers_module.models.auto.modeling_auto, |
|
transformers_module.models.auto.modeling_tf_auto, |
|
transformers_module.models.auto.modeling_flax_auto, |
|
] |
|
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: |
|
model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"] |
|
auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"] |
|
|
|
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings): |
|
|
|
if not hasattr(module, mapping): |
|
continue |
|
|
|
model_names = [] |
|
for name in getattr(module, mapping).values(): |
|
if isinstance(name, str): |
|
model_names.append(name) |
|
else: |
|
model_names.extend(list(name)) |
|
|
|
|
|
table.update({model_name: (pipeline_tag, cls) for model_name in model_names}) |
|
|
|
return table |
|
|
|
|
|
def update_metadata(token: str, commit_sha: str): |
|
""" |
|
Update the metadata for the Transformers repo in `huggingface/transformers-metadata`. |
|
|
|
Args: |
|
token (`str`): A valid token giving write access to `huggingface/transformers-metadata`. |
|
commit_sha (`str`): The commit SHA on Transformers corresponding to this update. |
|
""" |
|
frameworks_table = get_frameworks_table() |
|
frameworks_dataset = Dataset.from_pandas(frameworks_table) |
|
|
|
resolved_tags_file = hf_hub_download( |
|
"huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token |
|
) |
|
tags_dataset = Dataset.from_json(resolved_tags_file) |
|
table = { |
|
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) |
|
for i in range(len(tags_dataset)) |
|
} |
|
table = update_pipeline_and_auto_class_table(table) |
|
|
|
|
|
model_classes = sorted(table.keys()) |
|
tags_table = pd.DataFrame( |
|
{ |
|
"model_class": model_classes, |
|
"pipeline_tag": [table[m][0] for m in model_classes], |
|
"auto_class": [table[m][1] for m in model_classes], |
|
} |
|
) |
|
tags_dataset = Dataset.from_pandas(tags_table) |
|
|
|
hub_frameworks_json = hf_hub_download( |
|
repo_id="huggingface/transformers-metadata", |
|
filename="frameworks.json", |
|
repo_type="dataset", |
|
token=token, |
|
) |
|
with open(hub_frameworks_json) as f: |
|
hub_frameworks_json = f.read() |
|
|
|
hub_pipeline_tags_json = hf_hub_download( |
|
repo_id="huggingface/transformers-metadata", |
|
filename="pipeline_tags.json", |
|
repo_type="dataset", |
|
token=token, |
|
) |
|
with open(hub_pipeline_tags_json) as f: |
|
hub_pipeline_tags_json = f.read() |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json")) |
|
tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json")) |
|
|
|
with open(os.path.join(tmp_dir, "frameworks.json")) as f: |
|
frameworks_json = f.read() |
|
with open(os.path.join(tmp_dir, "pipeline_tags.json")) as f: |
|
pipeline_tags_json = f.read() |
|
|
|
frameworks_equal = hub_frameworks_json == frameworks_json |
|
hub_pipeline_tags_equal = hub_pipeline_tags_json == pipeline_tags_json |
|
|
|
if frameworks_equal and hub_pipeline_tags_equal: |
|
print("No updates on the Hub, not pushing the metadata files.") |
|
return |
|
|
|
if commit_sha is not None: |
|
commit_message = ( |
|
f"Update with commit {commit_sha}\n\nSee: " |
|
f"https://github.com/huggingface/transformers/commit/{commit_sha}" |
|
) |
|
else: |
|
commit_message = "Update" |
|
|
|
upload_folder( |
|
repo_id="huggingface/transformers-metadata", |
|
folder_path=tmp_dir, |
|
repo_type="dataset", |
|
token=token, |
|
commit_message=commit_message, |
|
) |
|
|
|
|
|
def check_pipeline_tags(): |
|
""" |
|
Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script. |
|
""" |
|
in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} |
|
pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS |
|
missing = [] |
|
for key in pipeline_tasks: |
|
if key not in in_table: |
|
model = pipeline_tasks[key]["pt"] |
|
if isinstance(model, (list, tuple)): |
|
model = model[0] |
|
model = model.__name__ |
|
if model not in in_table.values(): |
|
missing.append(key) |
|
|
|
if len(missing) > 0: |
|
msg = ", ".join(missing) |
|
raise ValueError( |
|
"The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " |
|
f"`utils/update_metadata.py`: {msg}. Please add them!" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") |
|
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") |
|
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") |
|
args = parser.parse_args() |
|
|
|
if args.check_only: |
|
check_pipeline_tags() |
|
else: |
|
update_metadata(args.token, args.commit_sha) |
|
|