# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks the big table in the file docs/source/en/index.md and potentially updates it. Use from the root of the repo with: ```bash python utils/check_inits.py ``` for a check that will error in case of inconsistencies (used by `make repo-consistency`). To auto-fix issues run: ```bash python utils/check_inits.py --fix_and_overwrite ``` which is used by `make fix-copies`. """ import argparse import collections import os import re from typing import List from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py TRANSFORMERS_PATH = "src/transformers" PATH_TO_DOCS = "docs/source/en" REPO_PATH = "." def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str: """ Find the text in filename between two prompts. Args: filename (`str`): The file to search into. start_prompt (`str`): A string to look for at the start of the content searched. end_prompt (`str`): A string that will mark the end of the content to look for. Returns: `str`: The content between the prompts. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start prompt. start_index = 0 while not lines[start_index].startswith(start_prompt): start_index += 1 start_index += 1 # Now go until the end prompt. end_index = start_index while not lines[end_index].startswith(end_prompt): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # Regexes that match TF/Flax/PT model names. Add here suffixes that are used to identify models, separated by | _re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch after the two previous regexes. _re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. transformers_module = direct_transformers_import(TRANSFORMERS_PATH) def camel_case_split(identifier: str) -> List[str]: """ Split a camel-cased name into words. Args: identifier (`str`): The camel-cased name to parse. Returns: `List[str]`: The list of words in the identifier (as seprated by capital letters). Example: ```py >>> camel_case_split("CamelCasedClass") ["Camel", "Cased", "Class"] ``` """ # Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) return [m.group(0) for m in matches] def _center_text(text: str, width: int) -> str: """ Utility that will add spaces on the left and right of a text to make it centered for a given width. Args: text (`str`): The text to center. width (`int`): The desired length of the result. Returns: `str`: A text of length `width` with the original `text` in the middle. """ text_length = 2 if text == "✅" or text == "❌" else len(text) left_indent = (width - text_length) // 2 right_indent = width - text_length - left_indent return " " * left_indent + text + " " * right_indent SPECIAL_MODEL_NAME_LINK_MAPPING = { "Data2VecAudio": "[Data2VecAudio](model_doc/data2vec)", "Data2VecText": "[Data2VecText](model_doc/data2vec)", "Data2VecVision": "[Data2VecVision](model_doc/data2vec)", "DonutSwin": "[DonutSwin](model_doc/donut)", } MODEL_NAMES_WITH_SAME_CONFIG = { "BARThez": "BART", "BARTpho": "BART", "BertJapanese": "BERT", "BERTweet": "BERT", "BORT": "BERT", "ByT5": "T5", "CPM": "OpenAI GPT-2", "DePlot": "Pix2Struct", "DialoGPT": "OpenAI GPT-2", "DiT": "BEiT", "FLAN-T5": "T5", "FLAN-UL2": "T5", "HerBERT": "BERT", "LayoutXLM": "LayoutLMv2", "Llama2": "LLaMA", "Llama3": "LLaMA", "MADLAD-400": "T5", "MatCha": "Pix2Struct", "mBART-50": "mBART", "Megatron-GPT2": "OpenAI GPT-2", "mLUKE": "LUKE", "MMS": "Wav2Vec2", "NLLB": "M2M100", "PhoBERT": "BERT", "T5v1.1": "T5", "TAPEX": "BART", "UL2": "T5", "Wav2Vec2Phoneme": "Wav2Vec2", "XLM-V": "XLM-RoBERTa", "XLS-R": "Wav2Vec2", "XLSR-Wav2Vec2": "Wav2Vec2", } MODEL_NAMES_TO_IGNORE = ["CLIPVisionModel", "SiglipVisionModel", "ChineseCLIPVisionModel"] def get_model_table_from_auto_modules() -> str: """ Generates an up-to-date model table from the content of the auto modules. """ # Dictionary model names to config. config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES model_name_to_config = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. pt_models = collections.defaultdict(bool) tf_models = collections.defaultdict(bool) flax_models = collections.defaultdict(bool) # Let's lookup through all transformers object (once). for attr_name in dir(transformers_module): lookup_dict = None if _re_tf_models.match(attr_name) is not None: lookup_dict = tf_models attr_name = _re_tf_models.match(attr_name).groups()[0] elif _re_flax_models.match(attr_name) is not None: lookup_dict = flax_models attr_name = _re_flax_models.match(attr_name).groups()[0] elif _re_pt_models.match(attr_name) is not None: lookup_dict = pt_models attr_name = _re_pt_models.match(attr_name).groups()[0] if lookup_dict is not None: while len(attr_name) > 0: if attr_name in model_name_to_prefix.values(): lookup_dict[attr_name] = True break # Try again after removing the last word in the name attr_name = "".join(camel_case_split(attr_name)[:-1]) # Let's build that table! model_names = list(model_name_to_config.keys()) + list(MODEL_NAMES_WITH_SAME_CONFIG.keys()) # model name to doc link mapping model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING model_name_to_link_mapping = {value: f"[{value}](model_doc/{key})" for key, value in model_names_mapping.items()} # update mapping with special model names model_name_to_link_mapping = { k: SPECIAL_MODEL_NAME_LINK_MAPPING[k] if k in SPECIAL_MODEL_NAME_LINK_MAPPING else v for k, v in model_name_to_link_mapping.items() } # MaskFormerSwin and TimmBackbone are backbones and so not meant to be loaded and used on their own. Instead, they define architectures which can be loaded using the AutoBackbone API. names_to_exclude = ["MaskFormerSwin", "TimmBackbone", "Speech2Text2"] model_names = [name for name in model_names if name not in names_to_exclude] model_names.sort(key=str.lower) columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). widths = [len(c) + 2 for c in columns] widths[0] = max([len(doc_link) for doc_link in model_name_to_link_mapping.values()]) + 2 # Build the table per se table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n" check = {True: "✅", False: "❌"} for name in model_names: if name in MODEL_NAMES_TO_IGNORE: continue if name in MODEL_NAMES_WITH_SAME_CONFIG.keys(): prefix = model_name_to_prefix[MODEL_NAMES_WITH_SAME_CONFIG[name]] else: prefix = model_name_to_prefix[name] line = [ model_name_to_link_mapping[name], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n" return table def check_model_table(overwrite=False): """ Check the model table in the index.md is consistent with the state of the lib and potentially fix it. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the table when it's not up to date. """ current_table, start_index, end_index, lines = _find_text_in_file( filename=os.path.join(PATH_TO_DOCS, "index.md"), start_prompt="", ) new_table = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:]) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_model_table(args.fix_and_overwrite)