Spaces:
Running
on
Zero
Running
on
Zero
REF: Uses internal variable for auto mask and image segmentation.
Browse files- .gitignore +2 -1
- SegmentAnything2AssistApp.py +434 -166
- src/SegmentAnything2Assist.py +241 -192
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
.tmp/
|
|
|
|
1 |
+
.tmp/
|
2 |
+
.venv/
|
SegmentAnything2AssistApp.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio
|
2 |
-
import gradio_image_annotation
|
3 |
import gradio_imageslider
|
4 |
import spaces
|
5 |
import torch
|
@@ -8,29 +8,65 @@ import src.SegmentAnything2Assist as SegmentAnything2Assist
|
|
8 |
|
9 |
example_image_annotation = {
|
10 |
"image": "assets/cars.jpg",
|
11 |
-
"boxes": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
}
|
13 |
|
|
|
14 |
VERBOSE = True
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(model_name = "sam2_hiera_tiny", device = torch.device("cuda"))
|
17 |
-
__image_point_coords = None
|
18 |
-
__image_point_labels = None
|
19 |
-
__image_box = None
|
20 |
-
__current_mask = None
|
21 |
-
__current_segment = None
|
22 |
|
23 |
def __change_base_model(model_name, device):
|
24 |
global segment_anything2assist
|
|
|
25 |
try:
|
26 |
-
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
|
27 |
-
|
|
|
|
|
28 |
except:
|
29 |
-
gradio.Error(f"Model could not be changed", duration
|
|
|
30 |
|
31 |
def __post_process_annotator_inputs(value):
|
32 |
-
global __image_point_coords, __image_point_labels, __image_box
|
33 |
-
global __current_mask, __current_segment
|
34 |
if VERBOSE:
|
35 |
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Called.")
|
36 |
__current_mask, __current_segment = None, None
|
@@ -38,111 +74,167 @@ def __post_process_annotator_inputs(value):
|
|
38 |
__image_point_coords = []
|
39 |
__image_point_labels = []
|
40 |
__image_box = []
|
41 |
-
|
42 |
b_has_box = False
|
43 |
for box in value["boxes"]:
|
44 |
-
if box[
|
45 |
if not b_has_box:
|
46 |
new_box = box.copy()
|
47 |
-
new_box[
|
48 |
new_boxes.append(new_box)
|
49 |
b_has_box = True
|
50 |
-
__image_box = [
|
51 |
-
|
52 |
-
|
53 |
-
box['xmax'],
|
54 |
-
box['ymax']
|
55 |
-
]
|
56 |
-
|
57 |
-
|
58 |
-
elif box['label'] == '+' or box['label'] == '-':
|
59 |
new_box = box.copy()
|
60 |
-
new_box[
|
61 |
-
new_box[
|
62 |
-
new_box[
|
63 |
-
new_box[
|
64 |
-
new_box[
|
65 |
new_boxes.append(new_box)
|
66 |
-
|
67 |
-
__image_point_coords.append([new_box[
|
68 |
-
__image_point_labels.append(1 if box[
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
if VERBOSE:
|
80 |
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Done.")
|
81 |
|
|
|
82 |
|
83 |
|
84 |
-
@spaces.GPU(duration
|
85 |
-
def __generate_mask(
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
global segment_anything2assist
|
89 |
|
90 |
# Force post processing of annotated image
|
91 |
-
__post_process_annotator_inputs(
|
|
|
|
|
92 |
|
93 |
if VERBOSE:
|
94 |
print("SegmentAnything2AssistApp::__generate_mask::Called.")
|
95 |
mask_chw, mask_iou = segment_anything2assist.generate_masks_from_image(
|
96 |
value["image"],
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
mask_threshold,
|
101 |
max_hole_area,
|
102 |
-
max_sprinkle_area
|
103 |
)
|
104 |
|
105 |
if VERBOSE:
|
106 |
print("SegmentAnything2AssistApp::__generate_mask::Masks generated.")
|
107 |
|
108 |
-
__current_mask, __current_segment = segment_anything2assist.apply_mask_to_image(
|
|
|
|
|
109 |
|
110 |
if VERBOSE:
|
111 |
print("SegmentAnything2AssistApp::__generate_mask::Masks and Segments created.")
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
if image_output_mode == "Mask":
|
114 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
elif image_output_mode == "Segment":
|
116 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
else:
|
118 |
gradio.Warning("This is an issue, please report the problem!", duration=5)
|
119 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
def __change_output_mode(image_input, radio):
|
122 |
-
global __current_mask, __current_segment
|
123 |
-
global __image_point_coords, __image_point_labels, __image_box
|
124 |
if VERBOSE:
|
125 |
print("SegmentAnything2AssistApp::__generate_mask::Called.")
|
126 |
if __current_mask is None or __current_segment is None:
|
127 |
gradio.Warning("Configuration was changed, generate the mask again", duration=5)
|
128 |
-
return gradio_imageslider.ImageSlider(render
|
129 |
if radio == "Mask":
|
130 |
return [image_input["image"], __current_mask]
|
131 |
elif radio == "Segment":
|
132 |
return [image_input["image"], __current_segment]
|
133 |
else:
|
134 |
gradio.Warning("This is an issue, please report the problem!", duration=5)
|
135 |
-
return gradio_imageslider.ImageSlider(render
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
138 |
global segment_anything2assist
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
output_1 = image_with_bbox if auto_bbox_mode else image
|
142 |
output_2 = mask if auto_mode == "Mask" else segment
|
143 |
return [output_1, output_2]
|
144 |
-
|
145 |
-
|
|
|
146 |
def __generate_auto_mask(
|
147 |
image,
|
148 |
points_per_side,
|
@@ -159,13 +251,13 @@ def __generate_auto_mask(
|
|
159 |
min_mask_region_area,
|
160 |
use_m2m,
|
161 |
multimask_output,
|
162 |
-
output_mode
|
163 |
-
|
164 |
global segment_anything2assist
|
165 |
if VERBOSE:
|
166 |
-
print("SegmentAnything2AssistApp::__generate_auto_mask::Called.")
|
167 |
-
|
168 |
-
__auto_masks = segment_anything2assist.generate_automatic_masks(
|
169 |
image,
|
170 |
points_per_side,
|
171 |
points_per_batch,
|
@@ -180,43 +272,84 @@ def __generate_auto_mask(
|
|
180 |
crop_n_points_downscale_factor,
|
181 |
min_mask_region_area,
|
182 |
use_m2m,
|
183 |
-
multimask_output
|
184 |
)
|
185 |
-
|
186 |
if len(__auto_masks) == 0:
|
187 |
-
gradio.Warning(
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
else:
|
192 |
choices = [str(i) for i in range(len(__auto_masks))]
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
with gradio.Blocks() as base_app:
|
199 |
gradio.Markdown("# SegmentAnything2Assist")
|
200 |
with gradio.Row():
|
201 |
with gradio.Column():
|
202 |
base_model_choice = gradio.Dropdown(
|
203 |
-
[
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
207 |
with gradio.Column():
|
208 |
base_gpu_choice = gradio.Dropdown(
|
209 |
-
[
|
210 |
-
value = 'cuda',
|
211 |
-
label = "Device Choice"
|
212 |
)
|
213 |
-
base_model_choice.change(
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
with gradio.Column():
|
218 |
-
with gradio.Accordion("Image Annotation Documentation", open
|
219 |
-
gradio.Markdown(
|
|
|
220 |
Image annotation allows you to mark specific regions of an image with labels.
|
221 |
In this app, you can annotate an image by drawing boxes and assigning labels to them.
|
222 |
The labels can be either '+' or '-'.
|
@@ -229,88 +362,223 @@ with gradio.Blocks() as base_app:
|
|
229 |
Note that the advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area.
|
230 |
These options control the sensitivity and accuracy of the segmentation process.
|
231 |
Experiment with different settings to achieve the desired results.
|
232 |
-
"""
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
image_generate_mask_button = gradio.Button("Generate Mask")
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
with gradio.Column():
|
255 |
-
with gradio.Accordion("Auto Annotation Documentation", open
|
256 |
-
gradio.Markdown(
|
257 |
-
|
|
|
|
|
258 |
auto_input = gradio.Image("assets/cars.jpg")
|
259 |
-
with gradio.Accordion("Advanced Options", open
|
260 |
-
auto_generate_SAM_points_per_side = gradio.Slider(
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
auto_generate_button = gradio.Button("Generate Auto Mask")
|
275 |
with gradio.Row():
|
276 |
with gradio.Column():
|
277 |
-
auto_output_mode = gradio.Radio(
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
auto_output = gradio_imageslider.ImageSlider()
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
auto_generate_button.click(
|
284 |
-
__generate_auto_mask,
|
285 |
-
inputs
|
286 |
-
auto_input,
|
287 |
-
auto_generate_SAM_points_per_side,
|
288 |
-
auto_generate_SAM_points_per_batch,
|
289 |
-
auto_generate_SAM_pred_iou_thresh,
|
290 |
-
auto_generate_SAM_stability_score_thresh,
|
291 |
-
auto_generate_SAM_stability_score_offset,
|
292 |
-
auto_generate_SAM_mask_threshold,
|
293 |
-
auto_generate_SAM_box_nms_thresh,
|
294 |
-
auto_generate_SAM_crop_n_layers,
|
295 |
-
auto_generate_SAM_crop_nms_thresh,
|
296 |
-
auto_generate_SAM_crop_overlay_ratio,
|
297 |
-
auto_generate_SAM_crop_n_points_downscale_factor,
|
298 |
-
auto_generate_SAM_min_mask_region_area,
|
299 |
-
auto_generate_SAM_use_m2m,
|
300 |
-
auto_generate_SAM_multimask_output,
|
301 |
-
auto_output_mode
|
302 |
],
|
303 |
-
outputs
|
304 |
auto_output,
|
305 |
auto_output_list,
|
306 |
-
auto_output_bbox
|
307 |
-
|
|
|
|
|
308 |
)
|
309 |
-
auto_output_list.change(
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
if __name__ == "__main__":
|
315 |
base_app.launch()
|
316 |
-
|
|
|
1 |
import gradio
|
2 |
+
import gradio_image_annotation
|
3 |
import gradio_imageslider
|
4 |
import spaces
|
5 |
import torch
|
|
|
8 |
|
9 |
example_image_annotation = {
|
10 |
"image": "assets/cars.jpg",
|
11 |
+
"boxes": [
|
12 |
+
{
|
13 |
+
"label": "+",
|
14 |
+
"color": (0, 255, 0),
|
15 |
+
"xmin": 886,
|
16 |
+
"ymin": 551,
|
17 |
+
"xmax": 886,
|
18 |
+
"ymax": 551,
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"label": "-",
|
22 |
+
"color": (255, 0, 0),
|
23 |
+
"xmin": 1239,
|
24 |
+
"ymin": 576,
|
25 |
+
"xmax": 1239,
|
26 |
+
"ymax": 576,
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"label": "-",
|
30 |
+
"color": (255, 0, 0),
|
31 |
+
"xmin": 610,
|
32 |
+
"ymin": 574,
|
33 |
+
"xmax": 610,
|
34 |
+
"ymax": 574,
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"label": "",
|
38 |
+
"color": (0, 0, 255),
|
39 |
+
"xmin": 254,
|
40 |
+
"ymin": 466,
|
41 |
+
"xmax": 1347,
|
42 |
+
"ymax": 1047,
|
43 |
+
},
|
44 |
+
],
|
45 |
}
|
46 |
|
47 |
+
|
48 |
VERBOSE = True
|
49 |
+
DEBUG = False
|
50 |
+
|
51 |
+
|
52 |
+
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
|
53 |
+
model_name="sam2_hiera_tiny", device=torch.device("cpu")
|
54 |
+
)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def __change_base_model(model_name, device):
|
58 |
global segment_anything2assist
|
59 |
+
gradio.Info(f"Changing model to {model_name} on {device}", duration=3)
|
60 |
try:
|
61 |
+
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
|
62 |
+
model_name=model_name, device=torch.device(device)
|
63 |
+
)
|
64 |
+
gradio.Info(f"Model has been changed to {model_name} on {device}", duration=5)
|
65 |
except:
|
66 |
+
gradio.Error(f"Model could not be changed", duration=5)
|
67 |
+
|
68 |
|
69 |
def __post_process_annotator_inputs(value):
|
|
|
|
|
70 |
if VERBOSE:
|
71 |
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Called.")
|
72 |
__current_mask, __current_segment = None, None
|
|
|
74 |
__image_point_coords = []
|
75 |
__image_point_labels = []
|
76 |
__image_box = []
|
77 |
+
|
78 |
b_has_box = False
|
79 |
for box in value["boxes"]:
|
80 |
+
if box["label"] == "":
|
81 |
if not b_has_box:
|
82 |
new_box = box.copy()
|
83 |
+
new_box["color"] = (0, 0, 255)
|
84 |
new_boxes.append(new_box)
|
85 |
b_has_box = True
|
86 |
+
__image_box = [box["xmin"], box["ymin"], box["xmax"], box["ymax"]]
|
87 |
+
|
88 |
+
elif box["label"] == "+" or box["label"] == "-":
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
new_box = box.copy()
|
90 |
+
new_box["color"] = (0, 255, 0) if box["label"] == "+" else (255, 0, 0)
|
91 |
+
new_box["xmin"] = int((box["xmin"] + box["xmax"]) / 2)
|
92 |
+
new_box["ymin"] = int((box["ymin"] + box["ymax"]) / 2)
|
93 |
+
new_box["xmax"] = new_box["xmin"]
|
94 |
+
new_box["ymax"] = new_box["ymin"]
|
95 |
new_boxes.append(new_box)
|
96 |
+
|
97 |
+
__image_point_coords.append([new_box["xmin"], new_box["ymin"]])
|
98 |
+
__image_point_labels.append(1 if box["label"] == "+" else 0)
|
99 |
+
|
100 |
+
if len(__image_box) == 0:
|
101 |
+
__image_box = None
|
102 |
+
|
103 |
+
if len(__image_point_coords) == 0:
|
104 |
+
__image_point_coords = None
|
105 |
+
|
106 |
+
if len(__image_point_labels) == 0:
|
107 |
+
__image_point_labels = None
|
108 |
|
109 |
if VERBOSE:
|
110 |
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Done.")
|
111 |
|
112 |
+
return __image_point_coords, __image_point_labels, __image_box
|
113 |
|
114 |
|
115 |
+
@spaces.GPU(duration=60)
|
116 |
+
def __generate_mask(
|
117 |
+
value,
|
118 |
+
mask_threshold,
|
119 |
+
max_hole_area,
|
120 |
+
max_sprinkle_area,
|
121 |
+
image_output_mode,
|
122 |
+
):
|
123 |
global segment_anything2assist
|
124 |
|
125 |
# Force post processing of annotated image
|
126 |
+
image_point_coords, image_point_labels, image_box = __post_process_annotator_inputs(
|
127 |
+
value
|
128 |
+
)
|
129 |
|
130 |
if VERBOSE:
|
131 |
print("SegmentAnything2AssistApp::__generate_mask::Called.")
|
132 |
mask_chw, mask_iou = segment_anything2assist.generate_masks_from_image(
|
133 |
value["image"],
|
134 |
+
image_point_coords,
|
135 |
+
image_point_labels,
|
136 |
+
image_box,
|
137 |
mask_threshold,
|
138 |
max_hole_area,
|
139 |
+
max_sprinkle_area,
|
140 |
)
|
141 |
|
142 |
if VERBOSE:
|
143 |
print("SegmentAnything2AssistApp::__generate_mask::Masks generated.")
|
144 |
|
145 |
+
__current_mask, __current_segment = segment_anything2assist.apply_mask_to_image(
|
146 |
+
value["image"], mask_chw[0]
|
147 |
+
)
|
148 |
|
149 |
if VERBOSE:
|
150 |
print("SegmentAnything2AssistApp::__generate_mask::Masks and Segments created.")
|
151 |
|
152 |
+
__image_box = gradio.DataFrame(value=[[]])
|
153 |
+
__image_point_coords = gradio.DataFrame(value=[[]])
|
154 |
+
if DEBUG:
|
155 |
+
__image_box = gradio.DataFrame(
|
156 |
+
value=[image_box],
|
157 |
+
label="Box",
|
158 |
+
interactive=False,
|
159 |
+
headers=["XMin", "YMin", "XMax", "YMax"],
|
160 |
+
)
|
161 |
+
x = []
|
162 |
+
for i, _ in enumerate(image_point_coords):
|
163 |
+
x.append(
|
164 |
+
[
|
165 |
+
image_point_labels[i],
|
166 |
+
image_point_coords[i][0],
|
167 |
+
image_point_coords[i][1],
|
168 |
+
]
|
169 |
+
)
|
170 |
+
__image_point_coords = gradio.DataFrame(
|
171 |
+
value=x,
|
172 |
+
label="Point Coords",
|
173 |
+
interactive=False,
|
174 |
+
headers=["Label", "X", "Y"],
|
175 |
+
)
|
176 |
+
|
177 |
if image_output_mode == "Mask":
|
178 |
+
return (
|
179 |
+
[value["image"], __current_mask],
|
180 |
+
__image_point_coords,
|
181 |
+
__image_box,
|
182 |
+
__current_mask,
|
183 |
+
__current_segment,
|
184 |
+
)
|
185 |
elif image_output_mode == "Segment":
|
186 |
+
return (
|
187 |
+
[value["image"], __current_segment],
|
188 |
+
__image_point_coords,
|
189 |
+
__image_box,
|
190 |
+
__current_mask,
|
191 |
+
__current_segment,
|
192 |
+
)
|
193 |
else:
|
194 |
gradio.Warning("This is an issue, please report the problem!", duration=5)
|
195 |
+
return (
|
196 |
+
gradio_imageslider.ImageSlider(render=True),
|
197 |
+
__image_point_coords,
|
198 |
+
__image_box,
|
199 |
+
__current_mask,
|
200 |
+
__current_segment,
|
201 |
+
)
|
202 |
+
|
203 |
|
204 |
+
def __change_output_mode(image_input, radio, __current_mask, __current_segment):
|
|
|
|
|
205 |
if VERBOSE:
|
206 |
print("SegmentAnything2AssistApp::__generate_mask::Called.")
|
207 |
if __current_mask is None or __current_segment is None:
|
208 |
gradio.Warning("Configuration was changed, generate the mask again", duration=5)
|
209 |
+
return gradio_imageslider.ImageSlider(render=True)
|
210 |
if radio == "Mask":
|
211 |
return [image_input["image"], __current_mask]
|
212 |
elif radio == "Segment":
|
213 |
return [image_input["image"], __current_segment]
|
214 |
else:
|
215 |
gradio.Warning("This is an issue, please report the problem!", duration=5)
|
216 |
+
return gradio_imageslider.ImageSlider(render=True)
|
217 |
+
|
218 |
+
|
219 |
+
def __generate_multi_mask_output(
|
220 |
+
image, auto_list, auto_mode, auto_bbox_mode, masks, bboxes
|
221 |
+
):
|
222 |
global segment_anything2assist
|
223 |
+
|
224 |
+
# When value from gallery is called, it is a tuple
|
225 |
+
if type(masks[0]) == tuple:
|
226 |
+
masks = [mask[0] for mask in masks]
|
227 |
+
|
228 |
+
image_with_bbox, mask, segment = segment_anything2assist.apply_auto_mask_to_image(
|
229 |
+
image, [int(i) - 1 for i in auto_list], masks, bboxes
|
230 |
+
)
|
231 |
+
|
232 |
output_1 = image_with_bbox if auto_bbox_mode else image
|
233 |
output_2 = mask if auto_mode == "Mask" else segment
|
234 |
return [output_1, output_2]
|
235 |
+
|
236 |
+
|
237 |
+
@spaces.GPU(duration=60)
|
238 |
def __generate_auto_mask(
|
239 |
image,
|
240 |
points_per_side,
|
|
|
251 |
min_mask_region_area,
|
252 |
use_m2m,
|
253 |
multimask_output,
|
254 |
+
output_mode,
|
255 |
+
):
|
256 |
global segment_anything2assist
|
257 |
if VERBOSE:
|
258 |
+
print("SegmentAnything2AssistApp::__generate_auto_mask::Called.")
|
259 |
+
|
260 |
+
__auto_masks, masks, bboxes = segment_anything2assist.generate_automatic_masks(
|
261 |
image,
|
262 |
points_per_side,
|
263 |
points_per_batch,
|
|
|
272 |
crop_n_points_downscale_factor,
|
273 |
min_mask_region_area,
|
274 |
use_m2m,
|
275 |
+
multimask_output,
|
276 |
)
|
277 |
+
|
278 |
if len(__auto_masks) == 0:
|
279 |
+
gradio.Warning(
|
280 |
+
"No masks generated, please tweak the advanced parameters.", duration=5
|
281 |
+
)
|
282 |
+
return (
|
283 |
+
gradio_imageslider.ImageSlider(),
|
284 |
+
gradio.CheckboxGroup([], value=[], label="Mask List", interactive=False),
|
285 |
+
gradio.Checkbox(value=False, label="Show Bounding Box", interactive=False),
|
286 |
+
gradio.Gallery(
|
287 |
+
None, label="Output Gallery", interactive=False, type="numpy"
|
288 |
+
),
|
289 |
+
gradio.DataFrame(
|
290 |
+
value=[[]],
|
291 |
+
label="Box",
|
292 |
+
interactive=False,
|
293 |
+
headers=["XMin", "YMin", "XMax", "YMax"],
|
294 |
+
),
|
295 |
+
)
|
296 |
else:
|
297 |
choices = [str(i) for i in range(len(__auto_masks))]
|
298 |
+
|
299 |
+
returning_image = __generate_multi_mask_output(
|
300 |
+
image, ["0"], output_mode, False, masks, bboxes
|
301 |
+
)
|
302 |
+
return (
|
303 |
+
returning_image,
|
304 |
+
gradio.CheckboxGroup(
|
305 |
+
choices, value=["0"], label="Mask List", interactive=True
|
306 |
+
),
|
307 |
+
gradio.Checkbox(value=False, label="Show Bounding Box", interactive=True),
|
308 |
+
gradio.Gallery(
|
309 |
+
masks, label="Output Gallery", interactive=True, type="numpy"
|
310 |
+
),
|
311 |
+
gradio.DataFrame(
|
312 |
+
value=bboxes,
|
313 |
+
label="Box",
|
314 |
+
interactive=False,
|
315 |
+
headers=["XMin", "YMin", "XMax", "YMax"],
|
316 |
+
type="array",
|
317 |
+
),
|
318 |
+
)
|
319 |
+
|
320 |
+
|
321 |
with gradio.Blocks() as base_app:
|
322 |
gradio.Markdown("# SegmentAnything2Assist")
|
323 |
with gradio.Row():
|
324 |
with gradio.Column():
|
325 |
base_model_choice = gradio.Dropdown(
|
326 |
+
[
|
327 |
+
"sam2_hiera_large",
|
328 |
+
"sam2_hiera_small",
|
329 |
+
"sam2_hiera_base_plus",
|
330 |
+
"sam2_hiera_tiny",
|
331 |
+
],
|
332 |
+
value="sam2_hiera_tiny",
|
333 |
+
label="Model Choice",
|
334 |
+
)
|
335 |
with gradio.Column():
|
336 |
base_gpu_choice = gradio.Dropdown(
|
337 |
+
["cpu", "cuda"], value="cuda", label="Device Choice"
|
|
|
|
|
338 |
)
|
339 |
+
base_model_choice.change(
|
340 |
+
__change_base_model, inputs=[base_model_choice, base_gpu_choice]
|
341 |
+
)
|
342 |
+
base_gpu_choice.change(
|
343 |
+
__change_base_model, inputs=[base_model_choice, base_gpu_choice]
|
344 |
+
)
|
345 |
+
|
346 |
+
# Image Segmentation
|
347 |
+
with gradio.Tab(label="Image Segmentation", id="image_tab") as image_tab:
|
348 |
+
gradio.Markdown("Image Segmentation", render=True)
|
349 |
with gradio.Column():
|
350 |
+
with gradio.Accordion("Image Annotation Documentation", open=False):
|
351 |
+
gradio.Markdown(
|
352 |
+
"""
|
353 |
Image annotation allows you to mark specific regions of an image with labels.
|
354 |
In this app, you can annotate an image by drawing boxes and assigning labels to them.
|
355 |
The labels can be either '+' or '-'.
|
|
|
362 |
Note that the advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area.
|
363 |
These options control the sensitivity and accuracy of the segmentation process.
|
364 |
Experiment with different settings to achieve the desired results.
|
365 |
+
"""
|
366 |
+
)
|
367 |
+
image_input = gradio_image_annotation.image_annotator(
|
368 |
+
example_image_annotation
|
369 |
+
)
|
370 |
+
with gradio.Accordion("Advanced Options", open=False):
|
371 |
+
image_generate_SAM_mask_threshold = gradio.Slider(
|
372 |
+
0.0, 1.0, 0.0, label="SAM Mask Threshold"
|
373 |
+
)
|
374 |
+
image_generate_SAM_max_hole_area = gradio.Slider(
|
375 |
+
0, 1000, 0, label="SAM Max Hole Area"
|
376 |
+
)
|
377 |
+
image_generate_SAM_max_sprinkle_area = gradio.Slider(
|
378 |
+
0, 1000, 0, label="SAM Max Sprinkle Area"
|
379 |
+
)
|
380 |
image_generate_mask_button = gradio.Button("Generate Mask")
|
381 |
+
with gradio.Row():
|
382 |
+
with gradio.Column():
|
383 |
+
image_output_mode = gradio.Radio(
|
384 |
+
["Segment", "Mask"], value="Segment", label="Output Mode"
|
385 |
+
)
|
386 |
+
with gradio.Column(scale=3):
|
387 |
+
image_output = gradio_imageslider.ImageSlider()
|
388 |
+
|
389 |
+
with gradio.Accordion("Debug", open=DEBUG, visible=DEBUG):
|
390 |
+
__image_point_coords = gradio.DataFrame(
|
391 |
+
value=[["+", 886, 551], ["-", 1239, 576]],
|
392 |
+
label="Point Coords",
|
393 |
+
interactive=False,
|
394 |
+
headers=["Label", "X", "Y"],
|
395 |
+
)
|
396 |
+
__image_box = gradio.DataFrame(
|
397 |
+
value=[[254, 466, 1347, 1047]],
|
398 |
+
label="Box",
|
399 |
+
interactive=False,
|
400 |
+
headers=["XMin", "YMin", "XMax", "YMax"],
|
401 |
+
)
|
402 |
+
__current_mask = gradio.Image(label="Current Mask", interactive=False)
|
403 |
+
__current_segment = gradio.Image(
|
404 |
+
label="Current Segment", interactive=False
|
405 |
+
)
|
406 |
+
|
407 |
+
# image_input.change(__post_process_annotator_inputs, inputs = [image_input])
|
408 |
+
image_generate_mask_button.click(
|
409 |
+
__generate_mask,
|
410 |
+
inputs=[
|
411 |
+
image_input,
|
412 |
+
image_generate_SAM_mask_threshold,
|
413 |
+
image_generate_SAM_max_hole_area,
|
414 |
+
image_generate_SAM_max_sprinkle_area,
|
415 |
+
image_output_mode,
|
416 |
+
],
|
417 |
+
outputs=[
|
418 |
+
image_output,
|
419 |
+
__image_point_coords,
|
420 |
+
__image_box,
|
421 |
+
__current_mask,
|
422 |
+
__current_segment,
|
423 |
+
],
|
424 |
+
)
|
425 |
+
image_output_mode.change(
|
426 |
+
__change_output_mode,
|
427 |
+
inputs=[
|
428 |
+
image_input,
|
429 |
+
image_output_mode,
|
430 |
+
__current_mask,
|
431 |
+
__current_segment,
|
432 |
+
],
|
433 |
+
outputs=[image_output],
|
434 |
+
)
|
435 |
+
|
436 |
+
# Auto Segmentation
|
437 |
+
with gradio.Tab(label="Auto Segmentation", id="auto_tab"):
|
438 |
+
gradio.Markdown("Auto Segmentation", render=True)
|
439 |
with gradio.Column():
|
440 |
+
with gradio.Accordion("Auto Annotation Documentation", open=False):
|
441 |
+
gradio.Markdown(
|
442 |
+
"""
|
443 |
+
"""
|
444 |
+
)
|
445 |
auto_input = gradio.Image("assets/cars.jpg")
|
446 |
+
with gradio.Accordion("Advanced Options", open=False):
|
447 |
+
auto_generate_SAM_points_per_side = gradio.Slider(
|
448 |
+
1, 64, 12, 1, label="Points Per Side", interactive=True
|
449 |
+
)
|
450 |
+
auto_generate_SAM_points_per_batch = gradio.Slider(
|
451 |
+
1, 64, 32, 1, label="Points Per Batch", interactive=True
|
452 |
+
)
|
453 |
+
auto_generate_SAM_pred_iou_thresh = gradio.Slider(
|
454 |
+
0.0, 1.0, 0.8, 1, label="Pred IOU Threshold", interactive=True
|
455 |
+
)
|
456 |
+
auto_generate_SAM_stability_score_thresh = gradio.Slider(
|
457 |
+
0.0, 1.0, 0.95, label="Stability Score Threshold", interactive=True
|
458 |
+
)
|
459 |
+
auto_generate_SAM_stability_score_offset = gradio.Slider(
|
460 |
+
0.0, 1.0, 1.0, label="Stability Score Offset", interactive=True
|
461 |
+
)
|
462 |
+
auto_generate_SAM_mask_threshold = gradio.Slider(
|
463 |
+
0.0, 1.0, 0.0, label="Mask Threshold", interactive=True
|
464 |
+
)
|
465 |
+
auto_generate_SAM_box_nms_thresh = gradio.Slider(
|
466 |
+
0.0, 1.0, 0.7, label="Box NMS Threshold", interactive=True
|
467 |
+
)
|
468 |
+
auto_generate_SAM_crop_n_layers = gradio.Slider(
|
469 |
+
0, 10, 0, 1, label="Crop N Layers", interactive=True
|
470 |
+
)
|
471 |
+
auto_generate_SAM_crop_nms_thresh = gradio.Slider(
|
472 |
+
0.0, 1.0, 0.7, label="Crop NMS Threshold", interactive=True
|
473 |
+
)
|
474 |
+
auto_generate_SAM_crop_overlay_ratio = gradio.Slider(
|
475 |
+
0.0, 1.0, 512 / 1500, label="Crop Overlay Ratio", interactive=True
|
476 |
+
)
|
477 |
+
auto_generate_SAM_crop_n_points_downscale_factor = gradio.Slider(
|
478 |
+
1, 10, 1, label="Crop N Points Downscale Factor", interactive=True
|
479 |
+
)
|
480 |
+
auto_generate_SAM_min_mask_region_area = gradio.Slider(
|
481 |
+
0, 1000, 0, label="Min Mask Region Area", interactive=True
|
482 |
+
)
|
483 |
+
auto_generate_SAM_use_m2m = gradio.Checkbox(
|
484 |
+
label="Use M2M", interactive=True
|
485 |
+
)
|
486 |
+
auto_generate_SAM_multimask_output = gradio.Checkbox(
|
487 |
+
value=True, label="Multi Mask Output", interactive=True
|
488 |
+
)
|
489 |
auto_generate_button = gradio.Button("Generate Auto Mask")
|
490 |
with gradio.Row():
|
491 |
with gradio.Column():
|
492 |
+
auto_output_mode = gradio.Radio(
|
493 |
+
["Segment", "Mask"],
|
494 |
+
value="Segment",
|
495 |
+
label="Output Mode",
|
496 |
+
interactive=True,
|
497 |
+
)
|
498 |
+
auto_output_list = gradio.CheckboxGroup(
|
499 |
+
[], value=[], label="Mask List", interactive=False
|
500 |
+
)
|
501 |
+
auto_output_bbox = gradio.Checkbox(
|
502 |
+
value=False, label="Show Bounding Box", interactive=False
|
503 |
+
)
|
504 |
+
with gradio.Column(scale=3):
|
505 |
auto_output = gradio_imageslider.ImageSlider()
|
506 |
+
with gradio.Accordion("Debug", open=DEBUG, visible=DEBUG):
|
507 |
+
__auto_output_gallery = gradio.Gallery(
|
508 |
+
None, label="Output Gallery", interactive=False, type="numpy"
|
509 |
+
)
|
510 |
+
__auto_bbox = gradio.DataFrame(
|
511 |
+
value=[[]],
|
512 |
+
label="Box",
|
513 |
+
interactive=False,
|
514 |
+
headers=["XMin", "YMin", "XMax", "YMax"],
|
515 |
+
)
|
516 |
+
|
517 |
auto_generate_button.click(
|
518 |
+
__generate_auto_mask,
|
519 |
+
inputs=[
|
520 |
+
auto_input,
|
521 |
+
auto_generate_SAM_points_per_side,
|
522 |
+
auto_generate_SAM_points_per_batch,
|
523 |
+
auto_generate_SAM_pred_iou_thresh,
|
524 |
+
auto_generate_SAM_stability_score_thresh,
|
525 |
+
auto_generate_SAM_stability_score_offset,
|
526 |
+
auto_generate_SAM_mask_threshold,
|
527 |
+
auto_generate_SAM_box_nms_thresh,
|
528 |
+
auto_generate_SAM_crop_n_layers,
|
529 |
+
auto_generate_SAM_crop_nms_thresh,
|
530 |
+
auto_generate_SAM_crop_overlay_ratio,
|
531 |
+
auto_generate_SAM_crop_n_points_downscale_factor,
|
532 |
+
auto_generate_SAM_min_mask_region_area,
|
533 |
+
auto_generate_SAM_use_m2m,
|
534 |
+
auto_generate_SAM_multimask_output,
|
535 |
+
auto_output_mode,
|
536 |
],
|
537 |
+
outputs=[
|
538 |
auto_output,
|
539 |
auto_output_list,
|
540 |
+
auto_output_bbox,
|
541 |
+
__auto_output_gallery,
|
542 |
+
__auto_bbox,
|
543 |
+
],
|
544 |
)
|
545 |
+
auto_output_list.change(
|
546 |
+
__generate_multi_mask_output,
|
547 |
+
inputs=[
|
548 |
+
auto_input,
|
549 |
+
auto_output_list,
|
550 |
+
auto_output_mode,
|
551 |
+
auto_output_bbox,
|
552 |
+
__auto_output_gallery,
|
553 |
+
__auto_bbox,
|
554 |
+
],
|
555 |
+
outputs=[auto_output],
|
556 |
+
)
|
557 |
+
auto_output_bbox.change(
|
558 |
+
__generate_multi_mask_output,
|
559 |
+
inputs=[
|
560 |
+
auto_input,
|
561 |
+
auto_output_list,
|
562 |
+
auto_output_mode,
|
563 |
+
auto_output_bbox,
|
564 |
+
__auto_output_gallery,
|
565 |
+
__auto_bbox,
|
566 |
+
],
|
567 |
+
outputs=[auto_output],
|
568 |
+
)
|
569 |
+
auto_output_mode.change(
|
570 |
+
__generate_multi_mask_output,
|
571 |
+
inputs=[
|
572 |
+
auto_input,
|
573 |
+
auto_output_list,
|
574 |
+
auto_output_mode,
|
575 |
+
auto_output_bbox,
|
576 |
+
__auto_output_gallery,
|
577 |
+
__auto_bbox,
|
578 |
+
],
|
579 |
+
outputs=[auto_output],
|
580 |
+
)
|
581 |
+
|
582 |
+
|
583 |
if __name__ == "__main__":
|
584 |
base_app.launch()
|
|
src/SegmentAnything2Assist.py
CHANGED
@@ -14,204 +14,253 @@ import cv2
|
|
14 |
|
15 |
SAM2_MODELS = {
|
16 |
"sam2_hiera_tiny": {
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
},
|
21 |
"sam2_hiera_small": {
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
},
|
26 |
"sam2_hiera_base_plus": {
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
},
|
31 |
"sam2_hiera_large": {
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
},
|
36 |
}
|
37 |
-
|
|
|
38 |
class SegmentAnything2Assist:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
SAM2_MODELS = {
|
16 |
"sam2_hiera_tiny": {
|
17 |
+
"download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt",
|
18 |
+
"model_path": ".tmp/checkpoints/sam2_hiera_tiny.pt",
|
19 |
+
"config_file": "sam2_hiera_t.yaml",
|
20 |
},
|
21 |
"sam2_hiera_small": {
|
22 |
+
"download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt",
|
23 |
+
"model_path": ".tmp/checkpoints/sam2_hiera_small.pt",
|
24 |
+
"config_file": "sam2_hiera_s.yaml",
|
25 |
},
|
26 |
"sam2_hiera_base_plus": {
|
27 |
+
"download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt",
|
28 |
+
"model_path": ".tmp/checkpoints/sam2_hiera_base_plus.pt",
|
29 |
+
"config_file": "sam2_hiera_b+.yaml",
|
30 |
},
|
31 |
"sam2_hiera_large": {
|
32 |
+
"download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt",
|
33 |
+
"model_path": ".tmp/checkpoints/sam2_hiera_large.pt",
|
34 |
+
"config_file": "sam2_hiera_l.yaml",
|
35 |
},
|
36 |
}
|
37 |
+
|
38 |
+
|
39 |
class SegmentAnything2Assist:
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
model_name: (
|
43 |
+
str
|
44 |
+
| typing.Literal[
|
45 |
+
"sam2_hiera_tiny",
|
46 |
+
"sam2_hiera_small",
|
47 |
+
"sam2_hiera_base_plus",
|
48 |
+
"sam2_hiera_large",
|
49 |
+
]
|
50 |
+
) = "sam2_hiera_small",
|
51 |
+
configuration: (
|
52 |
+
str | typing.Literal["Automatic Mask Generator", "Image"]
|
53 |
+
) = "Automatic Mask Generator",
|
54 |
+
download_url: str | None = None,
|
55 |
+
model_path: str | None = None,
|
56 |
+
download: bool = True,
|
57 |
+
device: str | torch.device = torch.device("cpu"),
|
58 |
+
verbose: bool = True,
|
59 |
+
) -> None:
|
60 |
+
assert (
|
61 |
+
model_name in SAM2_MODELS.keys()
|
62 |
+
), f"`model_name` should be either one of {list(SAM2_MODELS.keys())}"
|
63 |
+
assert configuration in ["Automatic Mask Generator", "Image"]
|
64 |
+
|
65 |
+
self.model_name = model_name
|
66 |
+
self.configuration = configuration
|
67 |
+
self.config_file = SAM2_MODELS[model_name]["config_file"]
|
68 |
+
self.device = device
|
69 |
+
|
70 |
+
self.download_url = (
|
71 |
+
download_url
|
72 |
+
if download_url is not None
|
73 |
+
else SAM2_MODELS[model_name]["download_url"]
|
74 |
+
)
|
75 |
+
self.model_path = (
|
76 |
+
model_path
|
77 |
+
if model_path is not None
|
78 |
+
else SAM2_MODELS[model_name]["model_path"]
|
79 |
+
)
|
80 |
+
os.makedirs(os.path.dirname(self.model_path), exist_ok=True)
|
81 |
+
self.verbose = verbose
|
82 |
+
|
83 |
+
if self.verbose:
|
84 |
+
print(f"SegmentAnything2Assist::__init__::Model Name: {self.model_name}")
|
85 |
+
print(
|
86 |
+
f"SegmentAnything2Assist::__init__::Configuration: {self.configuration}"
|
87 |
+
)
|
88 |
+
print(
|
89 |
+
f"SegmentAnything2Assist::__init__::Download URL: {self.download_url}"
|
90 |
+
)
|
91 |
+
print(f"SegmentAnything2Assist::__init__::Default Path: {self.model_path}")
|
92 |
+
print(
|
93 |
+
f"SegmentAnything2Assist::__init__::Configuration File: {self.config_file}"
|
94 |
+
)
|
95 |
+
|
96 |
+
if download:
|
97 |
+
self.download_model()
|
98 |
+
|
99 |
+
if self.is_model_available():
|
100 |
+
self.sam2 = sam2.build_sam.build_sam2(
|
101 |
+
config_file=self.config_file,
|
102 |
+
ckpt_path=self.model_path,
|
103 |
+
device=self.device,
|
104 |
+
)
|
105 |
+
if self.verbose:
|
106 |
+
print("SegmentAnything2Assist::__init__::SAM2 is loaded.")
|
107 |
+
else:
|
108 |
+
self.sam2 = None
|
109 |
+
if self.verbose:
|
110 |
+
print("SegmentAnything2Assist::__init__::SAM2 is not loaded.")
|
111 |
+
|
112 |
+
def is_model_available(self) -> bool:
|
113 |
+
ret = os.path.exists(self.model_path)
|
114 |
+
if self.verbose:
|
115 |
+
print(f"SegmentAnything2Assist::is_model_available::{ret}")
|
116 |
+
return ret
|
117 |
+
|
118 |
+
def load_model(self) -> None:
|
119 |
+
if self.is_model_available():
|
120 |
+
self.sam2 = sam2.build_sam(checkpoint=self.model_path)
|
121 |
+
|
122 |
+
def download_model(self, force: bool = False) -> None:
|
123 |
+
if not force and self.is_model_available():
|
124 |
+
print(f"{self.model_path} already exists. Skipping download.")
|
125 |
+
return
|
126 |
+
|
127 |
+
response = requests.get(self.download_url, stream=True)
|
128 |
+
total_size = int(response.headers.get("content-length", 0))
|
129 |
+
|
130 |
+
with open(self.model_path, "wb") as file, tqdm.tqdm(
|
131 |
+
total=total_size, unit="B", unit_scale=True
|
132 |
+
) as progress_bar:
|
133 |
+
for data in response.iter_content(chunk_size=1024):
|
134 |
+
file.write(data)
|
135 |
+
progress_bar.update(len(data))
|
136 |
+
|
137 |
+
def generate_automatic_masks(
|
138 |
+
self,
|
139 |
+
image,
|
140 |
+
points_per_side=32,
|
141 |
+
points_per_batch=32,
|
142 |
+
pred_iou_thresh=0.8,
|
143 |
+
stability_score_thresh=0.95,
|
144 |
+
stability_score_offset=1.0,
|
145 |
+
mask_threshold=0.0,
|
146 |
+
box_nms_thresh=0.7,
|
147 |
+
crop_n_layers=0,
|
148 |
+
crop_nms_thresh=0.7,
|
149 |
+
crop_overlay_ratio=512 / 1500,
|
150 |
+
crop_n_points_downscale_factor=1,
|
151 |
+
min_mask_region_area=0,
|
152 |
+
use_m2m=False,
|
153 |
+
multimask_output=True,
|
154 |
+
):
|
155 |
+
if self.sam2 is None:
|
156 |
+
print(
|
157 |
+
"SegmentAnything2Assist::generate_automatic_masks::SAM2 is not loaded."
|
158 |
+
)
|
159 |
+
return None
|
160 |
+
|
161 |
+
generator = sam2.automatic_mask_generator.SAM2AutomaticMaskGenerator(
|
162 |
+
model=self.sam2,
|
163 |
+
points_per_side=points_per_side,
|
164 |
+
points_per_batch=points_per_batch,
|
165 |
+
pred_iou_thresh=pred_iou_thresh,
|
166 |
+
stability_score_thresh=stability_score_thresh,
|
167 |
+
stability_score_offset=stability_score_offset,
|
168 |
+
mask_threshold=mask_threshold,
|
169 |
+
box_nms_thresh=box_nms_thresh,
|
170 |
+
crop_n_layers=crop_n_layers,
|
171 |
+
crop_nms_thresh=crop_nms_thresh,
|
172 |
+
crop_overlay_ratio=crop_overlay_ratio,
|
173 |
+
crop_n_points_downscale_factor=crop_n_points_downscale_factor,
|
174 |
+
min_mask_region_area=min_mask_region_area,
|
175 |
+
use_m2m=use_m2m,
|
176 |
+
multimask_output=multimask_output,
|
177 |
+
)
|
178 |
+
masks = generator.generate(image)
|
179 |
+
segmentation_masks = [mask for mask in masks]
|
180 |
+
segmentation_masks = [
|
181 |
+
numpy.where(mask["segmentation"] == True, 255, 0).astype(numpy.uint8)
|
182 |
+
for mask in segmentation_masks
|
183 |
+
]
|
184 |
+
segmentation_masks = [
|
185 |
+
cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) for mask in segmentation_masks
|
186 |
+
]
|
187 |
+
bbox_masks = [mask["bbox"] for mask in masks]
|
188 |
+
|
189 |
+
return masks, segmentation_masks, bbox_masks
|
190 |
+
|
191 |
+
def generate_masks_from_image(
|
192 |
+
self,
|
193 |
+
image,
|
194 |
+
point_coords,
|
195 |
+
point_labels,
|
196 |
+
box,
|
197 |
+
mask_threshold=0.0,
|
198 |
+
max_hole_area=0.0,
|
199 |
+
max_sprinkle_area=0.0,
|
200 |
+
):
|
201 |
+
generator = sam2.sam2_image_predictor.SAM2ImagePredictor(
|
202 |
+
self.sam2,
|
203 |
+
mask_threshold=mask_threshold,
|
204 |
+
max_hole_area=max_hole_area,
|
205 |
+
max_sprinkle_area=max_sprinkle_area,
|
206 |
+
)
|
207 |
+
generator.set_image(image)
|
208 |
+
|
209 |
+
masks_chw, mask_iou, mask_low_logits = generator.predict(
|
210 |
+
point_coords=(
|
211 |
+
numpy.array(point_coords) if point_coords is not None else None
|
212 |
+
),
|
213 |
+
point_labels=(
|
214 |
+
numpy.array(point_labels) if point_labels is not None else None
|
215 |
+
),
|
216 |
+
box=numpy.array(box) if box is not None else None,
|
217 |
+
multimask_output=False,
|
218 |
+
)
|
219 |
+
|
220 |
+
return masks_chw, mask_iou
|
221 |
+
|
222 |
+
def apply_mask_to_image(self, image, mask):
|
223 |
+
mask = numpy.array(mask)
|
224 |
+
mask = numpy.where(mask > 0, 255, 0).astype(numpy.uint8)
|
225 |
+
segment = cv2.bitwise_and(image, image, mask=mask)
|
226 |
+
return mask, segment
|
227 |
+
|
228 |
+
def apply_auto_mask_to_image(self, image, auto_list, masks, bboxes):
|
229 |
+
image_with_bounding_boxes = image.copy()
|
230 |
+
all_masks = None
|
231 |
+
|
232 |
+
cv2.imwrite(".tmp/mask_2.png", masks[3])
|
233 |
+
|
234 |
+
for _ in auto_list:
|
235 |
+
mask = masks[_]
|
236 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
237 |
+
|
238 |
+
bbox = bboxes[_]
|
239 |
+
if all_masks is None:
|
240 |
+
all_masks = mask
|
241 |
+
else:
|
242 |
+
all_masks = cv2.bitwise_or(all_masks, mask)
|
243 |
+
|
244 |
+
cv2.imwrite(".tmp/mask_3.png", masks[3])
|
245 |
+
|
246 |
+
random_color = numpy.random.randint(0, 255, size=3)
|
247 |
+
image_with_bounding_boxes = cv2.rectangle(
|
248 |
+
image_with_bounding_boxes,
|
249 |
+
(int(bbox[0]), int(bbox[1])),
|
250 |
+
(int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])),
|
251 |
+
random_color.tolist(),
|
252 |
+
2,
|
253 |
+
)
|
254 |
+
image_with_bounding_boxes = cv2.putText(
|
255 |
+
image_with_bounding_boxes,
|
256 |
+
f"{_ + 1}",
|
257 |
+
(int(bbox[0]), int(bbox[1]) - 10),
|
258 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
259 |
+
0.5,
|
260 |
+
random_color.tolist(),
|
261 |
+
2,
|
262 |
+
)
|
263 |
+
|
264 |
+
all_masks = all_masks.astype(numpy.uint8)
|
265 |
+
image_with_segments = cv2.bitwise_and(image, image, mask=all_masks)
|
266 |
+
return image_with_bounding_boxes, all_masks, image_with_segments
|