"""Utility function for gradio/external.py, designed for internal use.""" from __future__ import annotations import base64 import math import re import warnings import httpx import yaml from huggingface_hub import HfApi, ImageClassificationOutputElement, InferenceClient from gradio import components def get_model_info(model_name, hf_token=None): hf_api = HfApi(token=hf_token) print(f"Fetching model from: https://huggingface.co/{model_name}") model_info = hf_api.model_info(model_name) pipeline = model_info.pipeline_tag tags = model_info.tags return pipeline, tags ################## # Helper functions for processing tabular data ################## def get_tabular_examples(model_name: str) -> dict[str, list[float]]: readme = httpx.get(f"https://huggingface.co/{model_name}/resolve/main/README.md") if readme.status_code != 200: warnings.warn(f"Cannot load examples from README for {model_name}", UserWarning) example_data = {} else: yaml_regex = re.search( "(?:^|[\r\n])---[\n\r]+([\\S\\s]*?)[\n\r]+---([\n\r]|$)", readme.text ) if yaml_regex is None: example_data = {} else: example_yaml = next( yaml.safe_load_all(readme.text[: yaml_regex.span()[-1]]) ) example_data = example_yaml.get("widget", {}).get("structuredData", {}) if not example_data: raise ValueError( f"No example data found in README.md of {model_name} - Cannot build gradio demo. " "See the README.md here: https://huggingface.co/scikit-learn/tabular-playground/blob/main/README.md " "for a reference on how to provide example data to your model." ) # replace nan with string NaN for inference Endpoints for data in example_data.values(): for i, val in enumerate(data): if isinstance(val, float) and math.isnan(val): data[i] = "NaN" return example_data def cols_to_rows( example_data: dict[str, list[float | str] | None], ) -> tuple[list[str], list[list[float]]]: headers = list(example_data.keys()) n_rows = max(len(example_data[header] or []) for header in headers) data = [] for row_index in range(n_rows): row_data = [] for header in headers: col = example_data[header] or [] if row_index >= len(col): row_data.append("NaN") else: row_data.append(col[row_index]) data.append(row_data) return headers, data def rows_to_cols(incoming_data: dict) -> dict[str, dict[str, dict[str, list[str]]]]: data_column_wise = {} for i, header in enumerate(incoming_data["headers"]): data_column_wise[header] = [str(row[i]) for row in incoming_data["data"]] return {"inputs": {"data": data_column_wise}} ################## # Helper functions for processing other kinds of data ################## def postprocess_label(scores: list[ImageClassificationOutputElement]) -> dict: return {c.label: c.score for c in scores} def postprocess_mask_tokens(scores: list[dict[str, str | float]]) -> dict: return {c["token_str"]: c["score"] for c in scores} def postprocess_question_answering(answer: dict) -> tuple[str, dict]: return answer["answer"], {answer["answer"]: answer["score"]} def postprocess_visual_question_answering(scores: list[dict[str, str | float]]) -> dict: return {c["answer"]: c["score"] for c in scores} def zero_shot_classification_wrapper(client: InferenceClient): def zero_shot_classification_inner(input: str, labels: str, multi_label: bool): return client.zero_shot_classification( input, labels.split(","), multi_label=multi_label ) return zero_shot_classification_inner def sentence_similarity_wrapper(client: InferenceClient): def sentence_similarity_inner(input: str, sentences: str): return client.sentence_similarity(input, sentences.split("\n")) return sentence_similarity_inner def text_generation_wrapper(client: InferenceClient): def text_generation_inner(input: str): return input + client.text_generation(input) return text_generation_inner def conversational_wrapper(client: InferenceClient): def chat_fn(message, history): if not history: history = [] history.append({"role": "user", "content": message}) result = client.chat_completion(history) return result.choices[0].message.content return chat_fn def encode_to_base64(r: httpx.Response) -> str: # Handles the different ways HF API returns the prediction base64_repr = base64.b64encode(r.content).decode("utf-8") data_prefix = ";base64," # Case 1: base64 representation already includes data prefix if data_prefix in base64_repr: return base64_repr else: content_type = r.headers.get("content-type") # Case 2: the data prefix is a key in the response if content_type == "application/json": try: data = r.json()[0] content_type = data["content-type"] base64_repr = data["blob"] except KeyError as ke: raise ValueError( "Cannot determine content type returned by external API." ) from ke # Case 3: the data prefix is included in the response headers else: pass new_base64 = f"data:{content_type};base64,{base64_repr}" return new_base64 def format_ner_list(input_string: str, ner_groups: list[dict[str, str | int]]): if len(ner_groups) == 0: return [(input_string, None)] output = [] end = 0 prev_end = 0 for group in ner_groups: entity, start, end = group["entity_group"], group["start"], group["end"] output.append((input_string[prev_end:start], None)) output.append((input_string[start:end], entity)) prev_end = end output.append((input_string[end:], None)) return output def token_classification_wrapper(client: InferenceClient): def token_classification_inner(input: str): ner_list = client.token_classification(input) return format_ner_list(input, ner_list) # type: ignore return token_classification_inner def object_detection_wrapper(client: InferenceClient): def object_detection_inner(input: str): annotations = client.object_detection(input) formatted_annotations = [ ( ( a["box"]["xmin"], a["box"]["ymin"], a["box"]["xmax"], a["box"]["ymax"], ), a["label"], ) for a in annotations ] return (input, formatted_annotations) return object_detection_inner def chatbot_preprocess(text, state): if not state: return text, [], [] return ( text, state["conversation"]["generated_responses"], state["conversation"]["past_user_inputs"], ) def chatbot_postprocess(response): chatbot_history = list( zip( response["conversation"]["past_user_inputs"], response["conversation"]["generated_responses"], strict=False, ) ) return chatbot_history, response def tabular_wrapper(client: InferenceClient, pipeline: str): # This wrapper is needed to handle an issue in the InfereneClient where the model name is not # automatically loaded when using the tabular_classification and tabular_regression methods. # See: https://github.com/huggingface/huggingface_hub/issues/2015 def tabular_inner(data): if pipeline not in ("tabular_classification", "tabular_regression"): raise TypeError(f"pipeline type {pipeline!r} not supported") assert client.model # noqa: S101 if pipeline == "tabular_classification": return client.tabular_classification(data, model=client.model) else: return client.tabular_regression(data, model=client.model) return tabular_inner ################## # Helper function for cleaning up an Interface loaded from HF Spaces ################## def streamline_spaces_interface(config: dict) -> dict: """Streamlines the interface config dictionary to remove unnecessary keys.""" config["inputs"] = [ components.get_component_instance(component) for component in config["input_components"] ] config["outputs"] = [ components.get_component_instance(component) for component in config["output_components"] ] parameters = { "article", "description", "flagging_options", "inputs", "outputs", "title", } config = {k: config[k] for k in parameters} return config