Spaces:
Sleeping
Sleeping
Update faceapp.py
Browse files- faceapp.py +45 -22
faceapp.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
from transformers import
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
9 |
|
10 |
# Streamlit app
|
11 |
st.title("Emotion Recognition with vit-face-expression")
|
@@ -14,20 +15,42 @@ st.title("Emotion Recognition with vit-face-expression")
|
|
14 |
x = st.slider('Select a value')
|
15 |
st.write(f"{x} squared is {x * x}")
|
16 |
|
17 |
-
# Upload
|
18 |
-
|
19 |
-
|
20 |
-
if
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
# Create an image classification pipeline with scores
|
6 |
+
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
|
7 |
+
|
8 |
+
# Define emotion labels
|
9 |
+
emotion_labels = ["Neutral", "Sad", "Angry", "Surprised", "Happy"]
|
10 |
|
11 |
# Streamlit app
|
12 |
st.title("Emotion Recognition with vit-face-expression")
|
|
|
15 |
x = st.slider('Select a value')
|
16 |
st.write(f"{x} squared is {x * x}")
|
17 |
|
18 |
+
# Upload images
|
19 |
+
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
|
20 |
+
|
21 |
+
if st.button("Predict Emotions") and uploaded_images:
|
22 |
+
if len(uploaded_images) == 2:
|
23 |
+
# Open the uploaded images
|
24 |
+
images = [Image.open(img) for img in uploaded_images]
|
25 |
+
|
26 |
+
# Predict emotion for each image using the pipeline
|
27 |
+
results = [pipe(image) for image in images]
|
28 |
+
|
29 |
+
# Display images and predicted emotions side by side
|
30 |
+
col1, col2 = st.columns(2)
|
31 |
+
for i in range(2):
|
32 |
+
predicted_class = results[i][0]["label"]
|
33 |
+
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
34 |
+
col = col1 if i == 0 else col2
|
35 |
+
col.image(images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
36 |
+
col.write(f"Emotion Scores for {predicted_emotion}: {results[i][0]['score']:.4f}")
|
37 |
+
|
38 |
+
# Display scores for other categories
|
39 |
+
st.write(f"Emotion Scores for other categories (Image {i+1}):")
|
40 |
+
for label, score in zip(emotion_labels, results[i][0]["score"]):
|
41 |
+
if label.lower() != predicted_emotion.lower(): # Exclude the predicted emotion
|
42 |
+
st.write(f"{label}: {score:.4f}")
|
43 |
+
else:
|
44 |
+
# Open the uploaded images
|
45 |
+
images = [Image.open(img) for img in uploaded_images]
|
46 |
+
|
47 |
+
# Predict emotion for each image using the pipeline
|
48 |
+
results = [pipe(image) for image in images]
|
49 |
+
|
50 |
+
# Display images and predicted emotions
|
51 |
+
for i, result in enumerate(results):
|
52 |
+
predicted_class = result[0]["label"]
|
53 |
+
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
54 |
+
st.image(images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
55 |
+
st.write(f"Emotion Scores for Image {i+1}:")
|
56 |
+
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
|