File size: 4,835 Bytes
8a4145e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import streamlit as st
from PIL import Image
from transformers import pipeline
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import parallel_coordinates

# Initialize session state for results, image names, and image sizes if not already present
if 'results' not in st.session_state:
    st.session_state['results'] = []
if 'image_names' not in st.session_state:
    st.session_state['image_names'] = []
if 'image_sizes' not in st.session_state:
    st.session_state['image_sizes'] = []

# Disable PyplotGlobalUseWarning
st.set_option('deprecation.showPyplotGlobalUse', False)

# Create an image classification pipeline with scores
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)

# Streamlit app
st.title("Emotion Recognition with vit-face-expression")

# Upload images
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)

# Display thumbnail images alongside file names and sizes in the sidebar
selected_images = []
if uploaded_images:
    # Reset the image names and sizes lists each time new images are uploaded
    st.session_state['image_names'] = [img.name for img in uploaded_images]
    st.session_state['image_sizes'] = [round(img.size / 1024.0, 1) for img in uploaded_images]

    # Add a "Select All" checkbox in the sidebar
    select_all = st.sidebar.checkbox("Select All", False)
    
    for idx, img in enumerate(uploaded_images):
        image = Image.open(img)
        checkbox_key = f"{img.name}_checkbox_{idx}"  # Unique key for each checkbox
        # Display thumbnail image and checkbox in sidebar
        st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
        selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)         
        
        if selected:
            selected_images.append(image)

if st.button("Predict Emotions") and selected_images:
    # Predict emotion for each selected image using the pipeline
    st.session_state['results'] = [pipe(image) for image in selected_images]

# Generate DataFrame from results
if st.button("Generate HeatMap & DataFrame"):
    # Access the results, image names, and sizes from the session state
    results = st.session_state['results']
    image_names = st.session_state['image_names']
    image_sizes = st.session_state['image_sizes']
    if results:
        # Initialize an empty list to store all the data
        data = []

        # Iterate over the results and populate the list with dictionaries
        for i, result_set in enumerate(results):
            # Initialize a dictionary for the current set with zeros
            current_data = {
            
                'Happy': 0,
                'Surprise': 0,
                'Neutral': 0,
                'Sad': 0,
                'Disgust': 0,
                'Angry': 0,
                'Fear': 0,

                

                # Add other emotions if necessary
                'Image Name': image_names[i],
                #'Image Size (KB)': image_sizes[i]
                'Image Size (KB)': f"{image_sizes[i]:.1f}"  # Format the size to one decimal place
            }
            
            for result in result_set:
                # Capitalize the label and update the score in the current set
                emotion = result['label'].capitalize()
                score = round(result['score'], 4)  # Round the score to 4 decimal places
                current_data[emotion] = score
            
            # Append the current data to the data list
            data.append(current_data)

        # Convert the list of dictionaries into a pandas DataFrame
        df_emotions = pd.DataFrame(data)

        # Display the DataFrame
        st.write(df_emotions)

        # Plotting the heatmap for the first seven columns
        plt.figure(figsize=(10, 10))
        sns.heatmap(df_emotions.iloc[:, :7], annot=True, fmt=".1f", cmap='viridis')
        plt.title('Heatmap of Emotion Scores')
        plt.xlabel('Emotion Categories')
        plt.ylabel('Data Points')
        st.pyplot(plt)
        

        
        # Optional: Save the DataFrame to a CSV file
        df_emotions.to_csv('emotion_scores.csv', index=False)
        st.success('DataFrame generated and saved as emotion_scores.csv')
        
        with open('emotion_scores.csv', 'r') as f:
            csv_file = f.read()
        
        st.download_button(
            label='Download Emotion Scores as CSV',
            data=csv_file,
            file_name='emotion_scores.csv',
            mime='text/csv',
        )
        
        st.success('DataFrame generated and available for download.')
        
    else:
        st.error("No results to generate DataFrame. Please predict emotions first.")