Spaces:
Sleeping
Sleeping
Upload app (15)-w1-full working.py
Browse files- app (15)-w1-full working.py +126 -0
app (15)-w1-full working.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import pipeline
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
from pandas.plotting import parallel_coordinates
|
8 |
+
|
9 |
+
# Initialize session state for results, image names, and image sizes if not already present
|
10 |
+
if 'results' not in st.session_state:
|
11 |
+
st.session_state['results'] = []
|
12 |
+
if 'image_names' not in st.session_state:
|
13 |
+
st.session_state['image_names'] = []
|
14 |
+
if 'image_sizes' not in st.session_state:
|
15 |
+
st.session_state['image_sizes'] = []
|
16 |
+
|
17 |
+
# Disable PyplotGlobalUseWarning
|
18 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
19 |
+
|
20 |
+
# Create an image classification pipeline with scores
|
21 |
+
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
|
22 |
+
|
23 |
+
# Streamlit app
|
24 |
+
st.title("Emotion Recognition with vit-face-expression")
|
25 |
+
|
26 |
+
# Upload images
|
27 |
+
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
|
28 |
+
|
29 |
+
# Display thumbnail images alongside file names and sizes in the sidebar
|
30 |
+
selected_images = []
|
31 |
+
if uploaded_images:
|
32 |
+
# Reset the image names and sizes lists each time new images are uploaded
|
33 |
+
st.session_state['image_names'] = [img.name for img in uploaded_images]
|
34 |
+
st.session_state['image_sizes'] = [round(img.size / 1024.0, 1) for img in uploaded_images]
|
35 |
+
|
36 |
+
# Add a "Select All" checkbox in the sidebar
|
37 |
+
select_all = st.sidebar.checkbox("Select All", False)
|
38 |
+
|
39 |
+
for idx, img in enumerate(uploaded_images):
|
40 |
+
image = Image.open(img)
|
41 |
+
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
|
42 |
+
# Display thumbnail image and checkbox in sidebar
|
43 |
+
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
|
44 |
+
selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)
|
45 |
+
|
46 |
+
if selected:
|
47 |
+
selected_images.append(image)
|
48 |
+
|
49 |
+
if st.button("Predict Emotions") and selected_images:
|
50 |
+
# Predict emotion for each selected image using the pipeline
|
51 |
+
st.session_state['results'] = [pipe(image) for image in selected_images]
|
52 |
+
|
53 |
+
# Generate DataFrame from results
|
54 |
+
if st.button("Generate HeatMap & DataFrame"):
|
55 |
+
# Access the results, image names, and sizes from the session state
|
56 |
+
results = st.session_state['results']
|
57 |
+
image_names = st.session_state['image_names']
|
58 |
+
image_sizes = st.session_state['image_sizes']
|
59 |
+
if results:
|
60 |
+
# Initialize an empty list to store all the data
|
61 |
+
data = []
|
62 |
+
|
63 |
+
# Iterate over the results and populate the list with dictionaries
|
64 |
+
for i, result_set in enumerate(results):
|
65 |
+
# Initialize a dictionary for the current set with zeros
|
66 |
+
current_data = {
|
67 |
+
|
68 |
+
'Happy': 0,
|
69 |
+
'Surprise': 0,
|
70 |
+
'Neutral': 0,
|
71 |
+
'Sad': 0,
|
72 |
+
'Disgust': 0,
|
73 |
+
'Angry': 0,
|
74 |
+
'Fear': 0,
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
# Add other emotions if necessary
|
79 |
+
'Image Name': image_names[i],
|
80 |
+
#'Image Size (KB)': image_sizes[i]
|
81 |
+
'Image Size (KB)': f"{image_sizes[i]:.1f}" # Format the size to one decimal place
|
82 |
+
}
|
83 |
+
|
84 |
+
for result in result_set:
|
85 |
+
# Capitalize the label and update the score in the current set
|
86 |
+
emotion = result['label'].capitalize()
|
87 |
+
score = round(result['score'], 4) # Round the score to 4 decimal places
|
88 |
+
current_data[emotion] = score
|
89 |
+
|
90 |
+
# Append the current data to the data list
|
91 |
+
data.append(current_data)
|
92 |
+
|
93 |
+
# Convert the list of dictionaries into a pandas DataFrame
|
94 |
+
df_emotions = pd.DataFrame(data)
|
95 |
+
|
96 |
+
# Display the DataFrame
|
97 |
+
st.write(df_emotions)
|
98 |
+
|
99 |
+
# Plotting the heatmap for the first seven columns
|
100 |
+
plt.figure(figsize=(10, 10))
|
101 |
+
sns.heatmap(df_emotions.iloc[:, :7], annot=True, fmt=".1f", cmap='viridis')
|
102 |
+
plt.title('Heatmap of Emotion Scores')
|
103 |
+
plt.xlabel('Emotion Categories')
|
104 |
+
plt.ylabel('Data Points')
|
105 |
+
st.pyplot(plt)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
# Optional: Save the DataFrame to a CSV file
|
110 |
+
df_emotions.to_csv('emotion_scores.csv', index=False)
|
111 |
+
st.success('DataFrame generated and saved as emotion_scores.csv')
|
112 |
+
|
113 |
+
with open('emotion_scores.csv', 'r') as f:
|
114 |
+
csv_file = f.read()
|
115 |
+
|
116 |
+
st.download_button(
|
117 |
+
label='Download Emotion Scores as CSV',
|
118 |
+
data=csv_file,
|
119 |
+
file_name='emotion_scores.csv',
|
120 |
+
mime='text/csv',
|
121 |
+
)
|
122 |
+
|
123 |
+
st.success('DataFrame generated and available for download.')
|
124 |
+
|
125 |
+
else:
|
126 |
+
st.error("No results to generate DataFrame. Please predict emotions first.")
|