import streamlit as st from PIL import Image from transformers import pipeline import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pandas.plotting import parallel_coordinates # Initialize session state for results, image names, and image sizes if not already present if 'results' not in st.session_state: st.session_state['results'] = [] if 'image_names' not in st.session_state: st.session_state['image_names'] = [] if 'image_sizes' not in st.session_state: st.session_state['image_sizes'] = [] # Disable PyplotGlobalUseWarning st.set_option('deprecation.showPyplotGlobalUse', False) # Create an image classification pipeline with scores pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None) # Streamlit app st.title("Emotion Recognition with vit-face-expression") # Upload images uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True) # Display thumbnail images alongside file names and sizes in the sidebar selected_images = [] if uploaded_images: # Reset the image names and sizes lists each time new images are uploaded st.session_state['image_names'] = [img.name for img in uploaded_images] st.session_state['image_sizes'] = [round(img.size / 1024.0, 1) for img in uploaded_images] # Add a "Select All" checkbox in the sidebar select_all = st.sidebar.checkbox("Select All", False) for idx, img in enumerate(uploaded_images): image = Image.open(img) checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox # Display thumbnail image and checkbox in sidebar st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40) selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key) if selected: selected_images.append(image) if st.button("Predict Emotions") and selected_images: # Predict emotion for each selected image using the pipeline st.session_state['results'] = [pipe(image) for image in selected_images] # Generate DataFrame from results if st.button("Generate HeatMap & DataFrame"): # Access the results, image names, and sizes from the session state results = st.session_state['results'] image_names = st.session_state['image_names'] image_sizes = st.session_state['image_sizes'] if results: # Initialize an empty list to store all the data data = [] # Iterate over the results and populate the list with dictionaries for i, result_set in enumerate(results): # Initialize a dictionary for the current set with zeros current_data = { 'Happy': 0, 'Surprise': 0, 'Neutral': 0, 'Sad': 0, 'Disgust': 0, 'Angry': 0, 'Fear': 0, # Add other emotions if necessary 'Image Name': image_names[i], #'Image Size (KB)': image_sizes[i] 'Image Size (KB)': f"{image_sizes[i]:.1f}" # Format the size to one decimal place } for result in result_set: # Capitalize the label and update the score in the current set emotion = result['label'].capitalize() score = round(result['score'], 4) # Round the score to 4 decimal places current_data[emotion] = score # Append the current data to the data list data.append(current_data) # Convert the list of dictionaries into a pandas DataFrame df_emotions = pd.DataFrame(data) # Display the DataFrame st.write(df_emotions) # Plotting the heatmap for the first seven columns plt.figure(figsize=(10, 10)) sns.heatmap(df_emotions.iloc[:, :7], annot=True, fmt=".1f", cmap='viridis') plt.title('Heatmap of Emotion Scores') plt.xlabel('Emotion Categories') plt.ylabel('Data Points') st.pyplot(plt) # Optional: Save the DataFrame to a CSV file df_emotions.to_csv('emotion_scores.csv', index=False) st.success('DataFrame generated and saved as emotion_scores.csv') with open('emotion_scores.csv', 'r') as f: csv_file = f.read() st.download_button( label='Download Emotion Scores as CSV', data=csv_file, file_name='emotion_scores.csv', mime='text/csv', ) st.success('DataFrame generated and available for download.') else: st.error("No results to generate DataFrame. Please predict emotions first.")