self-chat / app_util.py
xu song
update
b57ad3d
raw
history blame
3.92 kB
import json
import gradio as gr
from utils.logging_util import logger
from models.cpp_qwen2 import bot
# from models.hf_qwen2 import bot
#
# def postprocess(self, y):
# if y is None:
# return []
# for i, (message, response) in enumerate(y):
# y[i] = (
# None if message is None else mdtex2html.convert((message)),
# None if response is None else mdtex2html.convert(response),
# )
# return y
#
# gr.Chatbot.postprocess = postprocess
def generate_user_message(chatbot, history):
if history and history[-1]["role"] == "user":
gr.Warning('You should generate assistant-response.')
yield chatbot, history
else:
chatbot.append(None)
streamer = bot.generate(history, stream=True)
for user_content, user_tokens in streamer:
chatbot[-1] = (user_content, None)
yield chatbot, history
user_tokens = bot.strip_stoptokens(user_tokens)
history.append({"role": "user", "content": user_content, "tokens": user_tokens})
yield chatbot, history
def generate_assistant_message(chatbot, history):
"""
auto-mode:query is None
manual-mode:query 是用户输入
"""
logger.info(f"generating {json.dumps(history, ensure_ascii=False)}")
user_content = history[-1]["content"]
if history[-1]["role"] != "user":
gr.Warning('You should generate or type user-input first.')
yield chatbot, history
else:
streamer = bot.generate(history, stream=True)
for assistant_content, assistant_tokens in streamer:
chatbot[-1] = (user_content, assistant_content)
yield chatbot, history
assistant_tokens = bot.strip_stoptokens(assistant_tokens)
history.append({"role": "assistant", "content": assistant_content, "tokens": assistant_tokens})
print(f"chatbot is {chatbot}")
print(f"history is {history}")
yield chatbot, history
def generate(chatbot, history):
logger.info(f"chatbot: {chatbot}; history: {history}")
streamer = None
if history[-1]["role"] in ["assistant", "system"]:
streamer = generate_user_message(chatbot, history)
elif history[-1]["role"] == "user":
streamer = generate_assistant_message(chatbot, history)
else:
gr.Warning("bug")
for out in streamer:
yield out
def append_user(input_content, chatbot, history):
if history[-1]["role"] == "user":
gr.Warning('You should generate assistant-response.')
return chatbot, history
chatbot.append((input_content, None))
history.append({"role": "user", "content": input_content})
return chatbot, history
def append_assistant(input_content, chatbot, history):
if history[-1]["role"] != "user":
gr.Warning('You should generate or type user-input first.')
return chatbot, history
chatbot[-1] = (chatbot[-1][0], input_content)
history.append({"role": "assistant", "content": input_content})
return chatbot, history
def undo_generate(chatbot, history):
if history[-1]["role"] == "user":
history = history[:-1]
chatbot = chatbot[:-1]
elif history[-1]["role"] == "assistant":
history = history[:-1]
chatbot[-1] = (chatbot[-1][0], None)
else:
pass
logger.info(f"after undo, {json.dumps(chatbot, ensure_ascii=False)}, {json.dumps(history, ensure_ascii=False)}")
return chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state(system):
return [], [{"role": "system", "content": system}]
def set_max_tokens(max_tokens):
bot.generation_kwargs["max_tokens"] = max_tokens
def set_temperature(temperature):
bot.generation_kwargs["temperature"] = temperature
def set_top_p(top_p):
bot.generation_kwargs["top_p"] = top_p
def set_top_k(top_k):
bot.generation_kwargs["top_k"] = top_k