Spaces:
Running
Running
File size: 5,398 Bytes
d10ecd7 6f9d07b d10ecd7 79b95c3 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f 79b95c3 d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f b15345c d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 9495a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import json
import socket
import pandas as pd
from vocab import load_tokener
from utils.zh_util import iter_vocab
from utils.log_util import logger
from functools import lru_cache
from urllib.parse import urlparse, parse_qs
@lru_cache
def tokenize(text, tokenizer_type, color_num=5):
"""
"""
logger.info("param=" + json.dumps({"text": text, "tokenizer_type": tokenizer_type}, ensure_ascii=False))
pos_tokens = []
tokenizer = load_tokener(tokenizer_type)
encoding = tokenizer.encode(text)
table = []
for idx, token_id in enumerate(encoding):
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
pos_tokens.extend([(decode_text, str(idx % color_num))])
# token "Byte": # 这是 utf-8编码吧?
token = tokenizer.convert_ids_to_tokens([token_id])[0]
if isinstance(token, bytes):
try:
token_str = token.decode("utf-8")
except:
token_str = token.decode("utf-8", errors="ignore")
logger.error("decode_error: " + json.dumps(
{"tokenizer_type": tokenizer_type, "token": str(token), "token_str": token_str},
ensure_ascii=False))
token_bytes = token
# json_dumps = json.dumps(token_str)
elif isinstance(token, str):
token_str = token
token_bytes = bytes(token_str, "utf-8")
# json_dumps = json.dumps(token_str)
else:
return
# ⭐
table.append(
{"TokenID": token_id,
"Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama
"Text": decode_text, #
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes)
"UTF8 Bytes": str(token_bytes),
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode
}
)
table_df = pd.DataFrame(table)
logger.info(f"Tokens={table[:2]}")
# print(table_df)
return gr.update(value=pos_tokens, label=f"Tokens: {len(encoding)}"), table_df
@lru_cache
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2):
"""
input_text.change
"""
pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1)
pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2)
return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2
def basic_count(tokenizer_type):
tokenizer = load_tokener(tokenizer_type)
stats = iter_vocab(tokenizer, tokenizer_type)
return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}'
@lru_cache
def get_overlap_token_size(tokenizer_type_1, tokenizer_type_2):
tokenizer1 = load_tokener(tokenizer_type_1)
tokenizer2 = load_tokener(tokenizer_type_2)
vocab_set_1 = tokenizer1.get_vocab().keys()
vocab_set_2 = tokenizer2.get_vocab().keys()
token1 = next(iter(vocab_set_1))
token2 = next(iter(vocab_set_2))
if type(token1) != type(token2): # bytes str
if isinstance(token1, str):
vocab_set_1 = set([token.encode("utf-8") for token in vocab_set_1])
if isinstance(token2, str):
vocab_set_2 = set([token.encode("utf-8") for token in vocab_set_2])
overlap_tokens = vocab_set_1 & vocab_set_2
overlap_token_size = len(overlap_tokens)
logger.info(
f"{overlap_token_size} OverlapTokens of {tokenizer_type_1} {tokenizer_type_2}: {list(overlap_tokens)[:10]}")
return overlap_token_size, overlap_token_size
default_user_input = """Replace this text in the input field to see how tokenization works
华为发布Mate60手机
ラグビーワールドカップ2023フランス"""
default_tokenizer_type_1 = "llama"
# default_tokenizer_type_2 = "internlm_chat_7b"
default_tokenizer_type_2 = "gpt_35_turbo"
def on_load(request: gr.Request):
"""
onLoad
"""
text = None
tokenizer_type_1 = None
tokenizer_type_2 = None
query_params = {}
if request:
client_ip = request.client.host
# local_ip = socket.gethostbyname(socket.gethostbyname(""))
# headers = request.kwargs['headers']
# if headers and 'x-forwarded-for' in headers:
# x_forwarded_for = headers['x-forwarded-for']
# client_ip = x_forwarded_for.split(' ')[0] if x_forwarded_for else ""
if "referer" in request.headers:
query_params = parse_qs(urlparse(request.headers["referer"]).query)
query_params = {k: v[0] for k, v in query_params.items() if len(v) > 0}
tokenizer_type_1 = query_params.get("tokenizer1", default_tokenizer_type_1)
tokenizer_type_2 = query_params.get("tokenizer2", default_tokenizer_type_2)
text = query_params.get("text", default_user_input)
logger.info(f"client_ip: {client_ip}; params: {query_params}")
return text, tokenizer_type_1, tokenizer_type_2
def test_coding():
bytes1 = b'\xe4\xb8\xad'
print(bytes1) # b'\xe4\xb8\xad'
if __name__ == "__main__":
print(get_overlap_token_size("gpt_35_turbo", "gpt_4"))
# print(basic_count("internlm_chat_7b"))
|