from typing import Iterator model_id = 'xuqinyang/baichuan-13b-chat-ggml-int4' from huggingface_hub import snapshot_download snapshot_download(model_id, local_dir="./") from llama_cpp import Llama llm = Llama(model_path="./ggml-model-q4_0.bin", n_ctx=4096,seed=-1) def run(message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.3, top_p: float = 0.85, top_k: int = 5) -> Iterator[str]: history = [] print(chat_history) result="" for i in chat_history: history.append({"role": "user", "content": i[0]}) history.append({"role": "assistant", "content": i[1]}) print(history) history.append({"role": "user", "content": message}) for response in llm.create_chat_completion(history,stop=[""],stream=True,max_tokens=-1,temperature=temperature,top_k=top_k,top_p=top_p,repeat_penalty=1.1): if "content" in response["choices"][0]["delta"]: result = result + response["choices"][0]["delta"]["content"] yield result