|
import os |
|
|
|
os.system('pip install paddlepaddle') |
|
os.system('pip install paddleocr') |
|
from paddleocr import PaddleOCR, draw_ocr |
|
from PIL import Image |
|
import gradio as gr |
|
import torch |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg') |
|
|
|
DISPLAY_WIDTH = 40 |
|
CYCLES = [20, 60, 100, 140, 180, 220] |
|
PIXEL = 'β' |
|
EMPTY = ' ' |
|
|
|
|
|
|
|
def solve(file_obj): |
|
cycle = 0 |
|
sprite = 1 |
|
total = 0 |
|
X = 1 |
|
crt = [] |
|
with open(file_obj.name) as f: |
|
data = f.read().split("\n") |
|
for line in data: |
|
if cycle in [sprite-1, sprite, sprite+1]: |
|
crt.append(PIXEL) |
|
else: |
|
crt.append(EMPTY) |
|
cycle += 1 |
|
if cycle in CYCLES: |
|
total += X * cycle |
|
if line.startswith("addx"): |
|
if cycle in [sprite-1, sprite, sprite+1]: |
|
crt.append(PIXEL) |
|
else: |
|
crt.append(EMPTY) |
|
cycle += 1 |
|
if cycle in CYCLES: |
|
total += X * cycle |
|
X += int(line.split()[-1]) |
|
sprite = X |
|
|
|
cycle = cycle % DISPLAY_WIDTH |
|
|
|
|
|
res = "\n".join(["".join(crt[i:i+DISPLAY_WIDTH]) for i in range(0, len(crt), DISPLAY_WIDTH)]) |
|
print(res) |
|
|
|
|
|
|
|
img = np.array([[1 if c == PIXEL else 0 for c in crt[i:i+DISPLAY_WIDTH]] for i in range(0, len(crt), DISPLAY_WIDTH)]) |
|
plt.imshow(img, cmap="binary") |
|
plt.axis('off') |
|
plt.savefig("day_10.png") |
|
img_path = "day_10.png" |
|
ocr = PaddleOCR(use_angle_cls=True, use_gpu=False) |
|
result = ocr.ocr(img_path, cls=True)[0] |
|
image = Image.open(img_path).convert('RGB') |
|
boxes = [line[0] for line in result] |
|
txts = [line[1][0] for line in result] |
|
scores = [line[1][1] for line in result] |
|
|
|
|
|
|
|
|
|
return txts, 'day_10.png' |
|
|
|
title = 'Cathode-Ray Tube' |
|
description = 'Day 10 2022 AoC using OCR!!!' |
|
article = "<p style='text-align: center'>Day 10 2022 AoC using OCR!!!</p>" |
|
css = ".output_image {height: 40rem !important; width: 100% !important;}" |
|
gr.Interface( |
|
solve, |
|
[gr.File(file_types='text', label='Input')], |
|
[gr.Textbox(label="OCR result"), gr.outputs.Image(type='file', label='OCR image')], |
|
title=title, |
|
description=description, |
|
article=article, |
|
css=css, |
|
enable_queue=True |
|
).launch(debug=True) |