File size: 10,982 Bytes
9842c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import os
import random
import autocuda
from pyabsa.utils.pyabsa_utils import fprint
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
DPMSolverMultistepScheduler,
)
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
from Waifu2x.magnify import ImageMagnifier
start_time = time.time()
is_colab = utils.is_google_colab()
device = autocuda.auto_cuda()
magnifier = ImageMagnifier()
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
# Model("anything v3", "anything-v3.0", "anything v3 style"),
Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"),
]
# Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
# Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
# Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
# Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
# Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
# Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
# Model("Robo Diffusion", "nousr/robo-diffusion", ""),
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
custom_model = None
if is_colab:
models.insert(0, Model("Custom model"))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torch.float16,
scheduler=scheduler,
safety_checker=lambda images, clip_input: (images, False),
)
else: # download all models
print(f"{datetime.datetime.now()} Downloading vae...")
vae = AutoencoderKL.from_pretrained(
current_model.path, subfolder="vae", torch_dtype=torch.float16
)
for model in models:
try:
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
unet = UNet2DConditionModel.from_pretrained(
model.path, subfolder="unet", torch_dtype=torch.float16
)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(
model.path,
unet=unet,
vae=vae,
torch_dtype=torch.float16,
scheduler=scheduler,
)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
model.path,
unet=unet,
vae=vae,
torch_dtype=torch.float16,
scheduler=scheduler,
)
except Exception as e:
print(
f"{datetime.datetime.now()} Failed to load model "
+ model.name
+ ": "
+ str(e)
)
models.remove(model)
pipe = models[0].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to(device)
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = (
'Enter prompt. "'
+ next((m.prefix for m in models if m.name == model_name), None)
+ '" is prefixed automatically'
if model_name != models[0].name
else "Don't forget to use the custom model prefix in the prompt!"
)
return gr.update(visible=model_name == models[0].name), gr.update(
placeholder=prefix
)
def inference(
model_name,
prompt,
guidance,
steps,
width=512,
height=512,
seed=0,
img=None,
strength=0.5,
neg_prompt="",
):
print(psutil.virtual_memory()) # print memory usage
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
try:
if img is not None:
return (
img_to_img(
model_path,
prompt,
neg_prompt,
img,
strength,
guidance,
steps,
width,
height,
generator,
),
None,
)
else:
return (
txt_to_img(
model_path,
prompt,
neg_prompt,
guidance,
steps,
width,
height,
generator,
),
None,
)
except Exception as e:
fprint(e)
return None, error_str(e)
def txt_to_img(
model_path, prompt, neg_prompt, guidance, steps, width, height, generator
):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=scheduler,
safety_checker=lambda images, clip_input: (images, False),
)
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to(device)
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt=neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
result.images[0] = magnifier.magnify(result.images[0])
result.images[0] = magnifier.magnify(result.images[0])
# save image
result.images[0].save(
"{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format(
saved_path,
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
model_name,
prompt,
guidance,
steps,
width,
height,
seed,
)
)
return replace_nsfw_images(result)
def img_to_img(
model_path,
prompt,
neg_prompt,
img,
strength,
guidance,
steps,
width,
height,
generator,
):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=scheduler,
safety_checker=lambda images, clip_input: (images, False),
)
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to(device)
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt=neg_prompt,
# num_images_per_prompt=n_images,
init_image=img,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
result.images[0] = magnifier.magnify(result.images[0])
result.images[0] = magnifier.magnify(result.images[0])
# save image
result.images[0].save(
"{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format(
saved_path,
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
model_name,
prompt,
guidance,
steps,
width,
height,
seed,
)
)
return replace_nsfw_images(result)
def replace_nsfw_images(results):
if is_colab:
return results.images[0]
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
if __name__ == "__main__":
# inference("DALL-E", "a dog", 0, 1000, 512, 512, 0, None, 0.5, "")
model_name = "anything v3"
saved_path = r"imgs"
if not os.path.exists(saved_path):
os.mkdir(saved_path)
n = 0
while True:
prompt_keys = [
"beautiful eyes",
"cumulonimbus clouds",
"sky",
"detailed fingers",
random.choice(
[
"white hair",
"red hair",
"blonde hair",
"black hair",
"green hair",
]
),
random.choice(
[
"blue eyes",
"green eyes",
"red eyes",
"black eyes",
"yellow eyes",
]
),
random.choice(["flower meadow", "garden", "city", "river", "beach"]),
random.choice(["Elif", "Angel"]),
]
guidance = 7.5
steps = 25
# width = 1024
# height = 1024
# width = 768
# height = 1024
width = 512
height = 888
seed = 0
img = None
strength = 0.5
neg_prompt = ""
inference(
model_name,
".".join(prompt_keys),
guidance,
steps,
width=width,
height=height,
seed=seed,
img=img,
strength=strength,
neg_prompt=neg_prompt,
)
n += 1
fprint(n)
|