|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
os.system("pip install gfpgan") |
|
os.system("python setup.py develop") |
|
|
|
import cv2 |
|
import shutil |
|
import tempfile |
|
import torch |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
|
|
from realesrgan.utils import RealESRGANer |
|
|
|
try: |
|
from cog import BasePredictor, Input, Path |
|
from gfpgan import GFPGANer |
|
except Exception: |
|
print("please install cog and realesrgan package") |
|
|
|
|
|
class Predictor(BasePredictor): |
|
def setup(self): |
|
os.makedirs("output", exist_ok=True) |
|
|
|
if not os.path.exists("weights/realesr-general-x4v3.pth"): |
|
os.system( |
|
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights" |
|
) |
|
if not os.path.exists("weights/GFPGANv1.4.pth"): |
|
os.system( |
|
"wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights" |
|
) |
|
if not os.path.exists("weights/RealESRGAN_x4plus.pth"): |
|
os.system( |
|
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights" |
|
) |
|
if not os.path.exists("weights/RealESRGAN_x4plus_anime_6B.pth"): |
|
os.system( |
|
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights" |
|
) |
|
if not os.path.exists("weights/realesr-animevideov3.pth"): |
|
os.system( |
|
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights" |
|
) |
|
|
|
def choose_model(self, scale, version, tile=0): |
|
half = True if torch.cuda.is_available() else False |
|
if version == "General - RealESRGANplus": |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=4, |
|
) |
|
model_path = "weights/RealESRGAN_x4plus.pth" |
|
self.upsampler = RealESRGANer( |
|
scale=4, |
|
model_path=model_path, |
|
model=model, |
|
tile=tile, |
|
tile_pad=10, |
|
pre_pad=0, |
|
half=half, |
|
) |
|
elif version == "General - v3": |
|
model = SRVGGNetCompact( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_conv=32, |
|
upscale=4, |
|
act_type="prelu", |
|
) |
|
model_path = "weights/realesr-general-x4v3.pth" |
|
self.upsampler = RealESRGANer( |
|
scale=4, |
|
model_path=model_path, |
|
model=model, |
|
tile=tile, |
|
tile_pad=10, |
|
pre_pad=0, |
|
half=half, |
|
) |
|
elif version == "Anime - anime6B": |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=6, |
|
num_grow_ch=32, |
|
scale=4, |
|
) |
|
model_path = "weights/RealESRGAN_x4plus_anime_6B.pth" |
|
self.upsampler = RealESRGANer( |
|
scale=4, |
|
model_path=model_path, |
|
model=model, |
|
tile=tile, |
|
tile_pad=10, |
|
pre_pad=0, |
|
half=half, |
|
) |
|
elif version == "AnimeVideo - v3": |
|
model = SRVGGNetCompact( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_conv=16, |
|
upscale=4, |
|
act_type="prelu", |
|
) |
|
model_path = "weights/realesr-animevideov3.pth" |
|
self.upsampler = RealESRGANer( |
|
scale=4, |
|
model_path=model_path, |
|
model=model, |
|
tile=tile, |
|
tile_pad=10, |
|
pre_pad=0, |
|
half=half, |
|
) |
|
|
|
self.face_enhancer = GFPGANer( |
|
model_path="weights/GFPGANv1.4.pth", |
|
upscale=scale, |
|
arch="clean", |
|
channel_multiplier=2, |
|
bg_upsampler=self.upsampler, |
|
) |
|
|
|
def predict( |
|
self, |
|
img: Path = Input(description="Input"), |
|
version: str = Input( |
|
description="RealESRGAN version. Please see [Readme] below for more descriptions", |
|
choices=[ |
|
"General - RealESRGANplus", |
|
"General - v3", |
|
"Anime - anime6B", |
|
"AnimeVideo - v3", |
|
], |
|
default="General - v3", |
|
), |
|
scale: float = Input(description="Rescaling factor", default=2), |
|
face_enhance: bool = Input( |
|
description="Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes", |
|
default=False, |
|
), |
|
tile: int = Input( |
|
description="Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200", |
|
default=0, |
|
), |
|
) -> Path: |
|
if tile <= 100 or tile is None: |
|
tile = 0 |
|
print( |
|
f"img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}." |
|
) |
|
try: |
|
extension = os.path.splitext(os.path.basename(str(img)))[1] |
|
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = "RGBA" |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
self.choose_model(scale, version, tile) |
|
|
|
try: |
|
if face_enhance: |
|
_, _, output = self.face_enhancer.enhance( |
|
img, has_aligned=False, only_center_face=False, paste_back=True |
|
) |
|
else: |
|
output, _ = self.upsampler.enhance(img, outscale=scale) |
|
except RuntimeError as error: |
|
print("Error", error) |
|
print( |
|
'If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.' |
|
) |
|
|
|
if img_mode == "RGBA": |
|
extension = "png" |
|
|
|
|
|
out_path = Path(tempfile.mkdtemp()) / f"out.{extension}" |
|
cv2.imwrite(str(out_path), output) |
|
except Exception as error: |
|
print("global exception: ", error) |
|
finally: |
|
clean_folder("output") |
|
return out_path |
|
|
|
|
|
def clean_folder(folder): |
|
for filename in os.listdir(folder): |
|
file_path = os.path.join(folder, filename) |
|
try: |
|
if os.path.isfile(file_path) or os.path.islink(file_path): |
|
os.unlink(file_path) |
|
elif os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
except Exception as e: |
|
print(f"Failed to delete {file_path}. Reason: {e}") |
|
|