|
import argparse |
|
import cv2 |
|
import glob |
|
import os |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from basicsr.utils.download_util import load_file_from_url |
|
|
|
from realesrgan import RealESRGANer |
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact |
|
|
|
|
|
def main(): |
|
"""Inference demo for Real-ESRGAN.""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-i", "--input", type=str, default="inputs", help="Input image or folder" |
|
) |
|
parser.add_argument( |
|
"-n", |
|
"--model_name", |
|
type=str, |
|
default="RealESRGAN_x4plus", |
|
help=( |
|
"Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | " |
|
"realesr-animevideov3 | realesr-general-x4v3" |
|
), |
|
) |
|
parser.add_argument( |
|
"-o", "--output", type=str, default="results", help="Output folder" |
|
) |
|
parser.add_argument( |
|
"-dn", |
|
"--denoise_strength", |
|
type=float, |
|
default=0.5, |
|
help=( |
|
"Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. " |
|
"Only used for the realesr-general-x4v3 model" |
|
), |
|
) |
|
parser.add_argument( |
|
"-s", |
|
"--outscale", |
|
type=float, |
|
default=4, |
|
help="The final upsampling scale of the image", |
|
) |
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
default=None, |
|
help="[Option] Model path. Usually, you do not need to specify it", |
|
) |
|
parser.add_argument( |
|
"--suffix", type=str, default="out", help="Suffix of the restored image" |
|
) |
|
parser.add_argument( |
|
"-t", |
|
"--tile", |
|
type=int, |
|
default=0, |
|
help="Tile size, 0 for no tile during testing", |
|
) |
|
parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding") |
|
parser.add_argument( |
|
"--pre_pad", type=int, default=0, help="Pre padding size at each border" |
|
) |
|
parser.add_argument( |
|
"--face_enhance", action="store_true", help="Use GFPGAN to enhance face" |
|
) |
|
parser.add_argument( |
|
"--fp32", |
|
action="store_true", |
|
help="Use fp32 precision during inference. Default: fp16 (half precision).", |
|
) |
|
parser.add_argument( |
|
"--alpha_upsampler", |
|
type=str, |
|
default="realesrgan", |
|
help="The upsampler for the alpha channels. Options: realesrgan | bicubic", |
|
) |
|
parser.add_argument( |
|
"--ext", |
|
type=str, |
|
default="auto", |
|
help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs", |
|
) |
|
parser.add_argument( |
|
"-g", |
|
"--gpu-id", |
|
type=int, |
|
default=None, |
|
help="gpu device to use (default=None) can be 0,1,2 for multi-gpu", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
args.model_name = args.model_name.split(".")[0] |
|
if args.model_name == "RealESRGAN_x4plus": |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=4, |
|
) |
|
netscale = 4 |
|
file_url = [ |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" |
|
] |
|
elif args.model_name == "RealESRNet_x4plus": |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=4, |
|
) |
|
netscale = 4 |
|
file_url = [ |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" |
|
] |
|
elif ( |
|
args.model_name == "RealESRGAN_x4plus_anime_6B" |
|
): |
|
model = RRDBNet( |
|
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 |
|
) |
|
netscale = 4 |
|
file_url = [ |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" |
|
] |
|
elif args.model_name == "RealESRGAN_x2plus": |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=2, |
|
) |
|
netscale = 2 |
|
file_url = [ |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" |
|
] |
|
elif args.model_name == "realesr-animevideov3": |
|
model = SRVGGNetCompact( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_conv=16, |
|
upscale=4, |
|
act_type="prelu", |
|
) |
|
netscale = 4 |
|
file_url = [ |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" |
|
] |
|
elif args.model_name == "realesr-general-x4v3": |
|
model = SRVGGNetCompact( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_conv=32, |
|
upscale=4, |
|
act_type="prelu", |
|
) |
|
netscale = 4 |
|
file_url = [ |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", |
|
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", |
|
] |
|
|
|
|
|
if args.model_path is not None: |
|
model_path = args.model_path |
|
else: |
|
model_path = os.path.join("weights", args.model_name + ".pth") |
|
if not os.path.isfile(model_path): |
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
for url in file_url: |
|
|
|
model_path = load_file_from_url( |
|
url=url, |
|
model_dir=os.path.join(ROOT_DIR, "weights"), |
|
progress=True, |
|
file_name=None, |
|
) |
|
|
|
|
|
dni_weight = None |
|
if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1: |
|
wdn_model_path = model_path.replace( |
|
"realesr-general-x4v3", "realesr-general-wdn-x4v3" |
|
) |
|
model_path = [model_path, wdn_model_path] |
|
dni_weight = [args.denoise_strength, 1 - args.denoise_strength] |
|
|
|
|
|
upsampler = RealESRGANer( |
|
scale=netscale, |
|
model_path=model_path, |
|
dni_weight=dni_weight, |
|
model=model, |
|
tile=args.tile, |
|
tile_pad=args.tile_pad, |
|
pre_pad=args.pre_pad, |
|
half=not args.fp32, |
|
gpu_id=args.gpu_id, |
|
) |
|
|
|
if args.face_enhance: |
|
from gfpgan import GFPGANer |
|
|
|
face_enhancer = GFPGANer( |
|
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", |
|
upscale=args.outscale, |
|
arch="clean", |
|
channel_multiplier=2, |
|
bg_upsampler=upsampler, |
|
) |
|
os.makedirs(args.output, exist_ok=True) |
|
|
|
if os.path.isfile(args.input): |
|
paths = [args.input] |
|
else: |
|
paths = sorted(glob.glob(os.path.join(args.input, "*"))) |
|
|
|
for idx, path in enumerate(paths): |
|
imgname, extension = os.path.splitext(os.path.basename(path)) |
|
print("Testing", idx, imgname) |
|
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = "RGBA" |
|
else: |
|
img_mode = None |
|
|
|
try: |
|
if args.face_enhance: |
|
_, _, output = face_enhancer.enhance( |
|
img, has_aligned=False, only_center_face=False, paste_back=True |
|
) |
|
else: |
|
output, _ = upsampler.enhance(img, outscale=args.outscale) |
|
except RuntimeError as error: |
|
print("Error", error) |
|
print( |
|
"If you encounter CUDA out of memory, try to set --tile with a smaller number." |
|
) |
|
else: |
|
if args.ext == "auto": |
|
extension = extension[1:] |
|
else: |
|
extension = args.ext |
|
if img_mode == "RGBA": |
|
extension = "png" |
|
if args.suffix == "": |
|
save_path = os.path.join(args.output, f"{imgname}.{extension}") |
|
else: |
|
save_path = os.path.join( |
|
args.output, f"{imgname}_{args.suffix}.{extension}" |
|
) |
|
cv2.imwrite(save_path, output) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|