yangheng's picture
init
9842c28
import argparse
import glob
import os
from PIL import Image
def main(args):
# For DF2K, we consider the following three scales,
# and the smallest image whose shortest edge is 400
scale_list = [0.75, 0.5, 1 / 3]
shortest_edge = 400
path_list = sorted(glob.glob(os.path.join(args.input, "*")))
for path in path_list:
print(path)
basename = os.path.splitext(os.path.basename(path))[0]
img = Image.open(path)
width, height = img.size
for idx, scale in enumerate(scale_list):
print(f"\t{scale:.2f}")
rlt = img.resize(
(int(width * scale), int(height * scale)), resample=Image.LANCZOS
)
rlt.save(os.path.join(args.output, f"{basename}T{idx}.png"))
# save the smallest image which the shortest edge is 400
if width < height:
ratio = height / width
width = shortest_edge
height = int(width * ratio)
else:
ratio = width / height
height = shortest_edge
width = int(height * ratio)
rlt = img.resize((int(width), int(height)), resample=Image.LANCZOS)
rlt.save(os.path.join(args.output, f"{basename}T{idx+1}.png"))
if __name__ == "__main__":
"""Generate multi-scale versions for GT images with LANCZOS resampling.
It is now used for DF2K dataset (DIV2K + Flickr 2K)
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--input", type=str, default="datasets/DF2K/DF2K_HR", help="Input folder"
)
parser.add_argument(
"--output",
type=str,
default="datasets/DF2K/DF2K_multiscale",
help="Output folder",
)
args = parser.parse_args()
os.makedirs(args.output, exist_ok=True)
main(args)