import cv2 import numpy as np from PIL import Image import glob import os from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact def realEsrgan( model_name="RealESRGAN_x4plus_anime_6B", model_path=None, input_dir="inputs", output_dir="results", denoise_strength=0.5, outscale=4, suffix="out", tile=200, tile_pad=10, pre_pad=0, face_enhance=True, alpha_upsampler="realsrgan", out_ext="auto", fp32=True, gpu_id=None, ): # determine models according to model names model_name = model_name.split(".")[0] if model_name == "RealESRGAN_x4plus": # x4 RRDBNet model model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4, ) netscale = 4 file_url = [ "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" ] elif model_name == "RealESRNet_x4plus": # x4 RRDBNet model model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4, ) netscale = 4 file_url = [ "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" ] elif model_name == "RealESRGAN_x4plus_anime_6B": # x4 RRDBNet model with 6 blocks model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 ) netscale = 4 file_url = [ "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" ] elif model_name == "RealESRGAN_x2plus": # x2 RRDBNet model model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2, ) netscale = 2 file_url = [ "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" ] elif model_name == "realesr-animevideov3": # x4 VGG-style model (XS size) model = SRVGGNetCompact( num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type="prelu", ) netscale = 4 file_url = [ "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" ] elif model_name == "realesr-general-x4v3": # x4 VGG-style model (S size) model = SRVGGNetCompact( num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type="prelu", ) netscale = 4 file_url = [ "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", ] # determine model paths if model_path is None: model_path = os.path.join("weights", model_name + ".pth") if not os.path.isfile(model_path): ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) for url in file_url: # model_path will be updated model_path = load_file_from_url( url=url, model_dir=os.path.join(ROOT_DIR, "weights"), progress=True, file_name=None, ) # use dni to control the denoise strength dni_weight = None if model_name == "realesr-general-x4v3" and denoise_strength != 1: wdn_model_path = model_path.replace( "realesr-general-x4v3", "realesr-general-wdn-x4v3" ) model_path = [model_path, wdn_model_path] dni_weight = [denoise_strength, 1 - denoise_strength] # restorer upsampler = RealESRGANer( scale=netscale, model_path=model_path, dni_weight=dni_weight, model=model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=not fp32, gpu_id=gpu_id, ) if face_enhance: # Use GFPGAN for face enhancement from gfpgan import GFPGANer face_enhancer = GFPGANer( model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", upscale=outscale, arch="clean", channel_multiplier=2, bg_upsampler=upsampler, ) os.makedirs(output_dir, exist_ok=True) if not isinstance(input_dir, list): paths = [input_dir] else: paths = sorted(glob.glob(os.path.join(input_dir, "*"))) Imgs = [] for idx, path in enumerate(paths): print(f"Scaling x{outscale}:", path) if isinstance(path, Image.Image): img = path img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) imgname = f"img_{idx}" else: imgname, extension = os.path.splitext(os.path.basename(path)) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = "RGBA" else: img_mode = None try: if face_enhance: _, _, output = face_enhancer.enhance( img, has_aligned=False, only_center_face=False, paste_back=True ) else: output, _ = upsampler.enhance(img, outscale=outscale) except RuntimeError as error: print("Error", error) print( "If you encounter CUDA or RAM out of memory, try to set --tile with a smaller number." ) else: # if out_ext == "auto": # extension = extension[1:] # else: # extension = out_ext # if img_mode == "RGBA": # RGBA images should be saved in png format # extension = "png" # if suffix == "": # save_path = os.path.join(output_dir, f"{imgname}.{extension}") # else: # save_path = os.path.join(output_dir, f"{imgname}_{suffix}.{extension}") # # cv2.imwrite(save_path, output) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img) Imgs.append(img) return Imgs