import os from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb from basicsr.data.transforms import augment, paired_random_crop from basicsr.utils import FileClient, imfrombytes, img2tensor from basicsr.utils.registry import DATASET_REGISTRY from torch.utils import data as data from torchvision.transforms.functional import normalize @DATASET_REGISTRY.register() class RealESRGANPairedDataset(data.Dataset): """Paired image dataset for image restoration. Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs. There are three modes: 1. 'lmdb': Use lmdb files. If opt['io_backend'] == lmdb. 2. 'meta_info': Use meta information file to generate paths. If opt['io_backend'] != lmdb and opt['meta_info'] is not None. 3. 'folder': Scan folders to generate paths. The rest. Args: opt (dict): Config for train datasets. It contains the following keys: dataroot_gt (str): Data root path for gt. dataroot_lq (str): Data root path for lq. meta_info (str): Path for meta information file. io_backend (dict): IO backend type and other kwarg. filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. Default: '{}'. gt_size (int): Cropped patched size for gt patches. use_hflip (bool): Use horizontal flips. use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). scale (bool): Scale, which will be added automatically. phase (str): 'train' or 'val'. """ def __init__(self, opt): super(RealESRGANPairedDataset, self).__init__() self.opt = opt self.file_client = None self.io_backend_opt = opt["io_backend"] # mean and std for normalizing the input images self.mean = opt["mean"] if "mean" in opt else None self.std = opt["std"] if "std" in opt else None self.gt_folder, self.lq_folder = opt["dataroot_gt"], opt["dataroot_lq"] self.filename_tmpl = opt["filename_tmpl"] if "filename_tmpl" in opt else "{}" # file client (lmdb io backend) if self.io_backend_opt["type"] == "lmdb": self.io_backend_opt["db_paths"] = [self.lq_folder, self.gt_folder] self.io_backend_opt["client_keys"] = ["lq", "gt"] self.paths = paired_paths_from_lmdb( [self.lq_folder, self.gt_folder], ["lq", "gt"] ) elif "meta_info" in self.opt and self.opt["meta_info"] is not None: # disk backend with meta_info # Each line in the meta_info describes the relative path to an image with open(self.opt["meta_info"]) as fin: paths = [line.strip() for line in fin] self.paths = [] for path in paths: gt_path, lq_path = path.split(", ") gt_path = os.path.join(self.gt_folder, gt_path) lq_path = os.path.join(self.lq_folder, lq_path) self.paths.append(dict([("gt_path", gt_path), ("lq_path", lq_path)])) else: # disk backend # it will scan the whole folder to get meta info # it will be time-consuming for folders with too many files. It is recommended using an extra meta txt file self.paths = paired_paths_from_folder( [self.lq_folder, self.gt_folder], ["lq", "gt"], self.filename_tmpl ) def __getitem__(self, index): if self.file_client is None: self.file_client = FileClient( self.io_backend_opt.pop("type"), **self.io_backend_opt ) scale = self.opt["scale"] # Load gt and lq images. Dimension order: HWC; channel order: BGR; # image range: [0, 1], float32. gt_path = self.paths[index]["gt_path"] img_bytes = self.file_client.get(gt_path, "gt") img_gt = imfrombytes(img_bytes, float32=True) lq_path = self.paths[index]["lq_path"] img_bytes = self.file_client.get(lq_path, "lq") img_lq = imfrombytes(img_bytes, float32=True) # augmentation for training if self.opt["phase"] == "train": gt_size = self.opt["gt_size"] # random crop img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path) # flip, rotation img_gt, img_lq = augment( [img_gt, img_lq], self.opt["use_hflip"], self.opt["use_rot"] ) # BGR to RGB, HWC to CHW, numpy to tensor img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) # normalize if self.mean is not None or self.std is not None: normalize(img_lq, self.mean, self.std, inplace=True) normalize(img_gt, self.mean, self.std, inplace=True) return {"lq": img_lq, "gt": img_gt, "lq_path": lq_path, "gt_path": gt_path} def __len__(self): return len(self.paths)