import argparse import glob import os from PIL import Image def main(args): # For DF2K, we consider the following three scales, # and the smallest image whose shortest edge is 400 scale_list = [0.75, 0.5, 1 / 3] shortest_edge = 400 path_list = sorted(glob.glob(os.path.join(args.input, "*"))) for path in path_list: print(path) basename = os.path.splitext(os.path.basename(path))[0] img = Image.open(path) width, height = img.size for idx, scale in enumerate(scale_list): print(f"\t{scale:.2f}") rlt = img.resize( (int(width * scale), int(height * scale)), resample=Image.LANCZOS ) rlt.save(os.path.join(args.output, f"{basename}T{idx}.png")) # save the smallest image which the shortest edge is 400 if width < height: ratio = height / width width = shortest_edge height = int(width * ratio) else: ratio = width / height height = shortest_edge width = int(height * ratio) rlt = img.resize((int(width), int(height)), resample=Image.LANCZOS) rlt.save(os.path.join(args.output, f"{basename}T{idx+1}.png")) if __name__ == "__main__": """Generate multi-scale versions for GT images with LANCZOS resampling. It is now used for DF2K dataset (DIV2K + Flickr 2K) """ parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, default="datasets/DF2K/DF2K_HR", help="Input folder" ) parser.add_argument( "--output", type=str, default="datasets/DF2K/DF2K_multiscale", help="Output folder", ) args = parser.parse_args() os.makedirs(args.output, exist_ok=True) main(args)